Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7168889377743013336266312 ~2017
7169243699914338487399912 ~2016
7169403397343016420383912 ~2017
7170028940314340057880712 ~2016
7170045024771700450247112 ~2018
7170877209743025263258312 ~2017
7170960722314341921444712 ~2016
7171258135114342516270312 ~2016
7171424923114342849846312 ~2016
7171671761914343343523912 ~2016
7171970707114343941414312 ~2016
7172840978314345681956712 ~2016
7173140486314346280972712 ~2016
7173361777114346723554312 ~2016
7173643813114347287626312 ~2016
7173870098314347740196712 ~2016
7174045313957392362511312 ~2017
7174177901914348355803912 ~2016
7174514347114349028694312 ~2016
7174882944143049297664712 ~2017
7174912051114349824102312 ~2016
7175253995914350507991912 ~2016
7175501339914351002679912 ~2016
7176023720314352047440712 ~2016
7176205274957409642199312 ~2017
Exponent Prime Factor Dig. Year
7176731765914353463531912 ~2016
7176959833157415678664912 ~2017
7177273976314354547952712 ~2016
7177329827343063978963912 ~2017
7177409213914354818427912 ~2016
7177614230314355228460712 ~2016
717804667212569...08611914 2023
7178296147743069776886312 ~2017
7178716147114357432294312 ~2016
7178792275114357584550312 ~2016
7178966411343073798467912 ~2017
7178973331114357946662312 ~2016
7179382153114358764306312 ~2016
7179720559114359441118312 ~2016
7180415417914360830835912 ~2016
7180770389914361540779912 ~2016
7180783193914361566387912 ~2016
7181292613114362585226312 ~2016
7181657239343089943435912 ~2017
7182029527114364059054312 ~2016
7182334637914364669275912 ~2016
7182448375114364896750312 ~2016
7182742525114365485050312 ~2016
718327501691114...26228915 2025
7183877586143103265516712 ~2017
Exponent Prime Factor Dig. Year
7184177078314368354156712 ~2016
7184278807114368557614312 ~2016
7184297696314368595392712 ~2016
7184326649914368653299912 ~2016
718439682231495...84028715 2024
7184872409914369744819912 ~2016
7184905421914369810843912 ~2016
7185117669743110706018312 ~2017
7185395351914370790703912 ~2016
7185412448314370824896712 ~2016
7185523812771855238127112 ~2018
7185843533914371687067912 ~2016
7186231666371862316663112 ~2018
7186454255343118725531912 ~2017
7186758727114373517454312 ~2016
7186815607114373631214312 ~2016
7186938728314373877456712 ~2016
7186980242314373960484712 ~2016
7187210591914374421183912 ~2016
7187361632314374723264712 ~2016
7187579863743125479182312 ~2017
7187644040314375288080712 ~2016
7187842343343127054059912 ~2017
7188178639971881786399112 ~2018
7188788467114377576934312 ~2016
Exponent Prime Factor Dig. Year
7189066987114378133974312 ~2016
7189092608314378185216712 ~2016
7189475000314378950000712 ~2016
7189870309971898703099112 ~2018
7189889321914379778643912 ~2016
7189945015114379890030312 ~2016
7190183987914380367975912 ~2016
7190803193914381606387912 ~2016
7191188785114382377570312 ~2016
7191514933343149089599912 ~2017
7191661453114383322906312 ~2016
7192221289114384442578312 ~2016
7192293476314384586952712 ~2016
7193062712314386125424712 ~2016
7193077669114386155338312 ~2016
7193126762314386253524712 ~2016
7193148734957545189879312 ~2017
7194000871114388001742312 ~2016
7194510422314389020844712 ~2016
7194666146314389332292712 ~2016
7194903695914389807391912 ~2016
7195097941157560783528912 ~2017
7195260736157562085888912 ~2017
7195670677114391341354312 ~2016
7196323305743177939834312 ~2017
Home
4.724.182 digits
e-mail
25-04-13