Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6690445139953523561119312 ~2017
6690592898313381185796712 ~2016
6690843445113381686890312 ~2016
6690861274153526890192912 ~2017
6691115201913382230403912 ~2016
6691310953113382621906312 ~2016
6691575929913383151859912 ~2016
6691664790140149988740712 ~2017
6692216069913384432139912 ~2016
6692320327113384640654312 ~2016
6693089510313386179020712 ~2016
6693449686153547597488912 ~2017
6693465173913386930347912 ~2016
6693549308313387098616712 ~2016
6693621734313387243468712 ~2016
6693693781113387387562312 ~2016
6694292540313388585080712 ~2016
6694603481913389206963912 ~2016
6695010133113390020266312 ~2016
6695538104313391076208712 ~2016
6696334463913392668927912 ~2016
6697105813113394211626312 ~2016
6697171441740183028650312 ~2017
6698489018313396978036712 ~2016
6698710519740192263118312 ~2017
Exponent Prime Factor Dig. Year
6699243865740195463194312 ~2017
6699946939113399893878312 ~2016
6700296245913400592491912 ~2016
6701087197340206523183912 ~2017
6701826271113403652542312 ~2016
6703022401113406044802312 ~2016
6703043071113406086142312 ~2016
6703520015913407040031912 ~2016
6703575409113407150818312 ~2016
6703704901113407409802312 ~2016
6704027987913408055975912 ~2016
6704080177113408160354312 ~2016
6704140112313408280224712 ~2016
6704645070767046450707112 ~2017
6704969327913409938655912 ~2016
6705099349113410198698312 ~2016
6705541901913411083803912 ~2016
6705591791913411183583912 ~2016
6705644591913411289183912 ~2016
6705917179740235503078312 ~2017
6706068584313412137168712 ~2016
6706557545913413115091912 ~2016
6706710709113413421418312 ~2016
6706758467913413516935912 ~2016
6707029139913414058279912 ~2016
Exponent Prime Factor Dig. Year
6707069705913414139411912 ~2016
6707279207913414558415912 ~2016
670740513974654...66951914 2024
6707530411340245182467912 ~2017
6707930915340247585491912 ~2017
6709185103113418370206312 ~2016
6709525834140257155004712 ~2017
6710264761113420529522312 ~2016
6710467807113420935614312 ~2016
6710709634753685677077712 ~2017
6711161756313422323512712 ~2016
6711234985113422469970312 ~2016
6711336761913422673523912 ~2016
6711538880313423077760712 ~2016
6711626941113423253882312 ~2016
6711791971740270751830312 ~2017
6711878201913423756403912 ~2016
6712100185113424200370312 ~2016
6712194469113424388938312 ~2016
6712502750313425005500712 ~2016
6713011945740278071674312 ~2017
6713323417340279940503912 ~2017
6713519351913427038703912 ~2016
6713758061953710064495312 ~2017
6714417955113428835910312 ~2016
Exponent Prime Factor Dig. Year
6715042117113430084234312 ~2016
6715105555113430211110312 ~2016
6715632281913431264563912 ~2016
6715801016313431602032712 ~2016
6716683155167166831551112 ~2017
6716828188367168281883112 ~2017
6717447854313434895708712 ~2016
6717856043913435712087912 ~2016
6718105059740308630358312 ~2017
6718480439913436960879912 ~2016
6718548848313437097696712 ~2016
6718564793913437129587912 ~2016
6718791701913437583403912 ~2016
6719181549740315089298312 ~2017
6719187452313438374904712 ~2016
6719419505913438839011912 ~2016
6719483429913438966859912 ~2016
6719658715113439317430312 ~2016
6719869238313439738476712 ~2016
6720022244313440044488712 ~2016
6720124747340320748483912 ~2017
6720392046767203920467112 ~2017
6720826331913441652663912 ~2016
6721428355113442856710312 ~2016
6722292923913444585847912 ~2016
Home
4.724.182 digits
e-mail
25-04-13