Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
4469211512935753692103312 ~2016
446925201238938504024711 ~2014
446950866718939017334311 ~2014
446958699838939173996711 ~2014
446964814438939296288711 ~2014
446965506838939310136711 ~2014
446999940718939998814311 ~2014
447014059798940281195911 ~2014
447091145991645...17243314 2024
4471106127171537698033712 ~2016
4471570225762601983159912 ~2016
4472055349135776442792912 ~2016
447241932771323...20999314 2023
447243331918944866638311 ~2014
447250993798945019875911 ~2014
447283980238945679604711 ~2014
4472970731326837824387912 ~2015
447322453318946449066311 ~2014
447322659238946453184711 ~2014
447343853212147...95408114 2023
447398003518947960070311 ~2014
447409039798948180795911 ~2014
4474092190371585475044912 ~2016
447426602398948532047911 ~2014
4474364539135794916312912 ~2016
Exponent Prime Factor Dig. Year
4474537114135796296912912 ~2016
4474557684744745576847112 ~2016
4474704688135797637504912 ~2016
447473890918949477818311 ~2014
4474815311326848891867912 ~2015
447627312838952546256711 ~2014
447630337198952606743911 ~2014
447633719518952674390311 ~2014
447652374598953047491911 ~2014
447674296318953485926311 ~2014
447704203198954084063911 ~2014
447747133918954942678311 ~2014
4477680982126866085892712 ~2015
447812068318956241366311 ~2014
4478376760126870260560712 ~2015
447887132518957742650311 ~2014
447930457438958609148711 ~2014
447989673598959793471911 ~2014
4480010605326880063631912 ~2015
448009134718960182694311 ~2014
448014481198960289623911 ~2014
448021801918960436038311 ~2014
4480412501935843300015312 ~2016
448109856238962197124711 ~2014
448111351198962227023911 ~2014
Exponent Prime Factor Dig. Year
448129496638962589932711 ~2014
448220881676893...60084714 2023
4482286515144822865151112 ~2016
4482328307326893969843912 ~2015
4482691741326896150447912 ~2015
4482911332735863290661712 ~2016
448309594198966191883911 ~2014
448316815198966336303911 ~2014
4483252572126899515432712 ~2015
448343007118966860142311 ~2014
448347484438966949688711 ~2014
4483484907726900909446312 ~2015
4483733457144837334571112 ~2016
448375936371569...77295114 2023
4484024116126904144696712 ~2015
448406981398968139627911 ~2014
448433264998968665299911 ~2014
448443725638968874512711 ~2014
448449185518968983710311 ~2014
448463516038969270320711 ~2014
448483581118969671622311 ~2014
448530538918970610778311 ~2014
448535373532404...02120914 2024
448540279798970805595911 ~2014
4485476766744854767667112 ~2016
Exponent Prime Factor Dig. Year
448563233398971264667911 ~2014
448584112918971682258311 ~2014
448593088918971861778311 ~2014
448627781398972555627911 ~2014
448649484838972989696711 ~2014
448675443838973508876711 ~2014
4487113114126922678684712 ~2015
448714365238974287304711 ~2014
448722634318974452686311 ~2014
4487302643326923815859912 ~2015
448749500518974990010311 ~2014
448755354238975107084711 ~2014
4487563744735900509957712 ~2016
448773290998975465819911 ~2014
448784140438975682808711 ~2014
448875312118977506242311 ~2014
448901613838978032276711 ~2014
448917969238978359384711 ~2014
448943896198978877923911 ~2014
448968322198979366443911 ~2014
4489747262935917978103312 ~2016
448984834198979696683911 ~2014
448988676838979773536711 ~2014
448991546099715...42954315 2025
448996749238979934984711 ~2014
Home
4.828.532 digits
e-mail
25-06-01