Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5235401516310470803032712 ~2015
5235446108310470892216712 ~2015
5235521955731413131734312 ~2016
5235779899110471559798312 ~2015
5235877654141887021232912 ~2016
5236531242131419187452712 ~2016
5236637449110473274898312 ~2015
5236822537331420935223912 ~2016
5236914457110473828914312 ~2015
523707934933257...55264714 2023
5237138381910474276763912 ~2015
5237299507110474599014312 ~2015
5237802269910475604539912 ~2015
5237815787910475631575912 ~2015
5237913908941903311271312 ~2016
5237980753110475961506312 ~2015
5238137731773333928243912 ~2017
5238205110131429230660712 ~2016
5238441349110476882698312 ~2015
5238842357910477684715912 ~2015
5238975794310477951588712 ~2015
5239411780131436470680712 ~2016
5239718417910479436835912 ~2015
5239727417910479454835912 ~2015
5239821355110479642710312 ~2015
Exponent Prime Factor Dig. Year
524006911971917...97810314 2023
5240430586131442583516712 ~2016
5240432225910480864451912 ~2015
5240455477110480910954312 ~2015
5240595097773368331367912 ~2017
5240614808941924918471312 ~2016
5240988809910481977619912 ~2015
5241238201331447429207912 ~2016
5241288655110482577310312 ~2015
5241487411110482974822312 ~2015
5242277399910484554799912 ~2015
5242544689110485089378312 ~2015
5242808957910485617915912 ~2015
5242824890310485649780712 ~2015
5243058517110486117034312 ~2015
5243347645110486695290312 ~2015
5243568961731461413770312 ~2016
5243747174310487494348712 ~2015
5244443730752444437307112 ~2016
5244839948310489679896712 ~2015
5244965993910489931987912 ~2015
5245225693110490451386312 ~2015
5245886024310491772048712 ~2015
5246040136141968321088912 ~2016
5246508223110493016446312 ~2015
Exponent Prime Factor Dig. Year
5246676947910493353895912 ~2015
5246717143331480302859912 ~2016
5247127628310494255256712 ~2015
5247263987331483583923912 ~2016
5247353056131484118336712 ~2016
5247497537910494995075912 ~2015
5247622412310495244824712 ~2015
5247693293910495386587912 ~2015
5247760888131486565328712 ~2016
5248126388310496252776712 ~2015
5248707373110497414746312 ~2015
5248911257910497822515912 ~2015
5248919147910497838295912 ~2015
5249770208310499540416712 ~2015
5249897191110499794382312 ~2015
5250245245110500490490312 ~2015
5251503470310503006940712 ~2015
5251572064131509432384712 ~2016
5251581434310503162868712 ~2015
5251825327331510951963912 ~2016
5251998770310503997540712 ~2015
5252340288131514041728712 ~2016
5252579816310505159632712 ~2015
5252636464352526364643112 ~2016
5252744735910505489471912 ~2015
Exponent Prime Factor Dig. Year
5253812808752538128087112 ~2016
5253912203910507824407912 ~2015
5253991550310507983100712 ~2015
5254172473110508344946312 ~2015
5254639933110509279866312 ~2015
5255209955910510419911912 ~2015
5255773946310511547892712 ~2015
5255854790310511709580712 ~2015
5255866991373582137878312 ~2017
5255999264310511998528712 ~2015
5256116443110512232886312 ~2015
5256207441731537244650312 ~2016
5256311899731537871398312 ~2016
525631363691471...18332114 2024
5256344633910512689267912 ~2015
5256634406310513268812712 ~2015
5256876409110513752818312 ~2015
5257028749110514057498312 ~2015
5257242854310514485708712 ~2015
5257777435110515554870312 ~2015
5258130288131548781728712 ~2016
5258658635910517317271912 ~2015
5258906711910517813423912 ~2015
5259002234310518004468712 ~2015
5259081049110518162098312 ~2015
Home
4.828.532 digits
e-mail
25-06-01