Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7258481383114516962766312 ~2016
7258700222314517400444712 ~2016
7259400746958075205975312 ~2017
7259675953758077407629712 ~2017
7259828053743558968322312 ~2017
7260436217914520872435912 ~2016
726048246731553...48002314 2023
7260542916143563257496712 ~2017
7260894305914521788611912 ~2016
7261011299914522022599912 ~2016
7261214555914522429111912 ~2016
7261411229914522822459912 ~2016
7261423705114522847410312 ~2016
7261672237114523344474312 ~2016
7261723587172617235871112 ~2018
7261972376314523944752712 ~2016
7262115925343572695551912 ~2017
7262212055914524424111912 ~2016
7263129301158105034408912 ~2017
7263321658158106573264912 ~2017
7263696332314527392664712 ~2016
7263735431914527470863912 ~2016
7264310840314528621680712 ~2016
7264568941114529137882312 ~2016
7264742459958117939679312 ~2017
Exponent Prime Factor Dig. Year
7264767139114529534278312 ~2016
7264865221343589191327912 ~2017
7265175643114530351286312 ~2016
7265676274158125410192912 ~2017
7266292094314532584188712 ~2016
7266338461114532676922312 ~2016
7266440114314532880228712 ~2016
7267098271743602589630312 ~2017
7267252663114534505326312 ~2016
7267771876143606631256712 ~2017
7268160896314536321792712 ~2016
7268206709914536413419912 ~2016
7268383661914536767323912 ~2016
7268604973114537209946312 ~2016
7269107461114538214922312 ~2016
7270270472958162163783312 ~2017
7270422643343622535859912 ~2017
7270598179114541196358312 ~2016
7270687643914541375287912 ~2016
7270801630143624809780712 ~2017
7270902106158167216848912 ~2017
7271018777914542037555912 ~2016
7272152023343632912139912 ~2017
7272476947114544953894312 ~2016
7272535675114545071350312 ~2016
Exponent Prime Factor Dig. Year
7272787496314545574992712 ~2016
7272866063914545732127912 ~2016
7273197371914546394743912 ~2016
7273460309914546920619912 ~2016
727374128273375...55172914 2023
7273807513114547615026312 ~2016
7273929951743643579710312 ~2017
7274132083114548264166312 ~2016
7274228348314548456696712 ~2016
7274960197114549920394312 ~2016
7275063692314550127384712 ~2016
727515663595543...56555914 2023
7275218179114550436358312 ~2016
7275375133114550750266312 ~2016
7276318735114552637470312 ~2016
7276887599914553775199912 ~2016
7277622530314555245060712 ~2016
7277939089114555878178312 ~2016
727799947132794...96979314 2024
7278142112314556284224712 ~2016
7278281155114556562310312 ~2016
7278321798143669930788712 ~2017
7278415493914556830987912 ~2016
7278598507114557197014312 ~2016
7278698405914557396811912 ~2016
Exponent Prime Factor Dig. Year
7279389265114558778530312 ~2016
7279463503114558927006312 ~2016
7280478458314560956916712 ~2016
7280679143914561358287912 ~2016
7282386325114564772650312 ~2016
7282650526143695903156712 ~2017
7282749308314565498616712 ~2016
7282888810758263110485712 ~2017
7283149231158265193848912 ~2017
7283165881114566331762312 ~2016
7283211293914566422587912 ~2016
7283322943114566645886312 ~2016
7283475703114566951406312 ~2016
7284028764772840287647112 ~2018
7284204733743705228402312 ~2017
7284453191343706719147912 ~2017
7284681668314569363336712 ~2016
7285225718314570451436712 ~2016
7285485932314570971864712 ~2016
7286253199114572506398312 ~2016
7286300890143717805340712 ~2017
7286468861914572937723912 ~2016
7286657619743719945718312 ~2017
7288212833914576425667912 ~2016
7288290619158306324952912 ~2017
Home
4.724.182 digits
e-mail
25-04-13