Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
8080585885116161171770312 ~2016
8080679299116161358598312 ~2016
8080886528316161773056712 ~2016
808144365231740...27054315 2023
8081449199348488695195912 ~2017
8081459487748488756926312 ~2017
8081499843748488999062312 ~2017
8081603669916163207339912 ~2016
8081998231116163996462312 ~2016
8082353714316164707428712 ~2016
8083736711916167473423912 ~2016
8084566040316169132080712 ~2016
8084610248316169220496712 ~2016
8084617381748507704290312 ~2017
8085006200964680049607312 ~2018
8085088621748510531730312 ~2017
8085115627748510693766312 ~2017
8085333269916170666539912 ~2016
8085589412316171178824712 ~2016
8086587865116173175730312 ~2016
8086797845916173595691912 ~2016
8087033405916174066811912 ~2016
8087108533116174217066312 ~2016
8087445383916174890767912 ~2016
8087567330316175134660712 ~2016
Exponent Prime Factor Dig. Year
808781294473963...42903114 2024
8087878880316175757760712 ~2016
808820597112847...01827314 2024
8088772921116177545842312 ~2016
8088874298316177748596712 ~2016
8088953015348533718091912 ~2017
8089626425916179252851912 ~2016
8089656989916179313979912 ~2016
8090412127348542472763912 ~2017
8090581741116181163482312 ~2016
8090648771916181297543912 ~2016
8090711399916181422799912 ~2016
8090992037916181984075912 ~2016
8091067757916182135515912 ~2016
8091130641748546783850312 ~2017
8092741100316185482200712 ~2016
8094418497748566510986312 ~2017
8095451881116190903762312 ~2016
8095735416148574412496712 ~2017
8095911355116191822710312 ~2016
8096664542316193329084712 ~2016
8097078881916194157763912 ~2016
809732801235522...04388714 2024
8097622325916195244651912 ~2016
8098039976964784319815312 ~2018
Exponent Prime Factor Dig. Year
8098043933916196087867912 ~2016
8098105717348588634303912 ~2017
8098505459916197010919912 ~2016
8098716515916197433031912 ~2016
8099339507916198679015912 ~2016
8100126595116200253190312 ~2016
8100778141116201556282312 ~2016
8103540125916207080251912 ~2016
8103813131916207626263912 ~2016
8104144452148624866712712 ~2017
8104490429916208980859912 ~2016
8104874267916209748535912 ~2016
8106237410316212474820712 ~2016
8106800587116213601174312 ~2016
8106827872148640967232712 ~2017
8106842858316213685716712 ~2016
8107327223916214654447912 ~2016
8107338049116214676098312 ~2016
8107587587916215175175912 ~2016
8107973830148647842980712 ~2017
8108151187764865209501712 ~2018
8108795669916217591339912 ~2016
8108985247116217970494312 ~2016
8109183001164873464008912 ~2018
8109657236316219314472712 ~2016
Exponent Prime Factor Dig. Year
8110814815116221629630312 ~2016
8110963640316221927280712 ~2016
811329020278243...45943314 2024
8113326425916226652851912 ~2016
8113599169116227198338312 ~2016
8114157791964913262335312 ~2018
8114325145164914601160912 ~2018
8114351671116228703342312 ~2016
8114378513916228757027912 ~2016
8114824057116229648114312 ~2016
8115442826316230885652712 ~2016
8115607939764924863517712 ~2018
8115825178148694951068712 ~2017
8116352816316232705632712 ~2016
8116654447116233308894312 ~2016
8116682591916233365183912 ~2016
8116865245116233730490312 ~2016
8117303198316234606396712 ~2016
8117385193116234770386312 ~2016
8117445359916234890719912 ~2016
8117450923116234901846312 ~2016
8117640403116235280806312 ~2016
8117841547116235683094312 ~2016
8117900060316235800120712 ~2016
8117914783164943318264912 ~2018
Home
4.724.182 digits
e-mail
25-04-13