Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5144783849910289567699912 ~2015
5144860792130869164752712 ~2016
5144982403110289964806312 ~2015
5145051347910290102695912 ~2015
5145132481110290264962312 ~2015
5145198977910290397955912 ~2015
5145293125110290586250312 ~2015
5145656105910291312211912 ~2015
5145829442941166635543312 ~2016
5146460712130878764272712 ~2016
5147284907910294569815912 ~2015
5147381819910294763639912 ~2015
5147579873910295159747912 ~2015
5148178085910296356171912 ~2015
5148473627330890841763912 ~2016
5148571991910297143983912 ~2015
5148677507910297355015912 ~2015
5148757759772082608635912 ~2017
5148859163910297718327912 ~2015
514924907579886...25344114 2023
5149261769910298523539912 ~2015
5149340807910298681615912 ~2015
5149503345151495033451112 ~2016
5150204233110300408466312 ~2015
5150208313110300416626312 ~2015
Exponent Prime Factor Dig. Year
5150214467910300428935912 ~2015
5150253037951502530379112 ~2016
515036894633430...18235914 2023
5150417935110300835870312 ~2015
5150790398310301580796712 ~2015
5151198305910302396611912 ~2015
5151272813910302545627912 ~2015
5151280180741210241445712 ~2016
5151437804310302875608712 ~2015
5152599548310305199096712 ~2015
5152699769910305399539912 ~2015
5153200039110306400078312 ~2015
5153500675110307001350312 ~2015
5153502516130921015096712 ~2016
5153536040310307072080712 ~2015
5154143018310308286036712 ~2015
5154314101110308628202312 ~2015
5154364699110308729398312 ~2015
5154787991910309575983912 ~2015
5154953125110309906250312 ~2015
5154971423330929828539912 ~2016
5155275985110310551970312 ~2015
5155288874310310577748712 ~2015
5155436819910310873639912 ~2015
5155496830130932980980712 ~2016
Exponent Prime Factor Dig. Year
5156029922310312059844712 ~2015
5156058382130936350292712 ~2016
5156277691110312555382312 ~2015
5156286107910312572215912 ~2015
5156325541141250604328912 ~2016
5156564150941252513207312 ~2016
5156600978310313201956712 ~2015
5156824891110313649782312 ~2015
5157224981910314449963912 ~2015
5157351563372202921886312 ~2017
5157591977910315183955912 ~2015
5157781433910315562867912 ~2015
5157900065910315800131912 ~2015
5157994010310315988020712 ~2015
5158044719910316089439912 ~2015
5158486581730950919490312 ~2016
5158672987110317345974312 ~2015
5159030102310318060204712 ~2015
5159058685730954352114312 ~2016
5159114311110318228622312 ~2015
5159409583110318819166312 ~2015
5159454352130956726112712 ~2016
5159502047910319004095912 ~2015
5159870131330959220787912 ~2016
5160007492130960044952712 ~2016
Exponent Prime Factor Dig. Year
5160034333110320068666312 ~2015
5160119395110320238790312 ~2015
5160466258130962797548712 ~2016
5160501323372247018526312 ~2017
5160591763110321183526312 ~2015
5160738979110321477958312 ~2015
5161064444310322128888712 ~2015
5161330447330967982683912 ~2016
5161529953110323059906312 ~2015
5161535412130969212472712 ~2016
5161945406310323890812712 ~2015
5162461051141299688408912 ~2016
5162927984310325855968712 ~2015
5163427994310326855988712 ~2015
5163650306310327300612712 ~2015
5163688553910327377107912 ~2015
5163756324751637563247112 ~2016
5163856561330983139367912 ~2016
5163920323330983521939912 ~2016
5163993157110327986314312 ~2015
5164403696310328807392712 ~2015
5164410596310328821192712 ~2015
5164786981730988721890312 ~2016
5164810694310329621388712 ~2015
5164938901741319511213712 ~2016
Home
4.828.532 digits
e-mail
25-06-01