Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5122123688310244247376712 ~2015
5122160942310244321884712 ~2015
5122443045151224430451112 ~2016
5122908241740983265933712 ~2016
5123061763740984494109712 ~2016
5123086118310246172236712 ~2015
5123147797110246295594312 ~2015
5123826895110247653790312 ~2015
5125132028310250264056712 ~2015
5125165375110250330750312 ~2015
5125411591730752469550312 ~2016
5125511902141004095216912 ~2016
5125985845951259858459112 ~2016
5126482705110252965410312 ~2015
5127019528141016156224912 ~2016
5127027543730762165262312 ~2016
5127544594351275445943112 ~2016
5127591497910255182995912 ~2015
5127606232351276062323112 ~2016
5127742109910255484219912 ~2015
5127936679110255873358312 ~2015
5128218493110256436986312 ~2015
5128223390310256446780712 ~2015
5128632971910257265943912 ~2015
5128682492310257364984712 ~2015
Exponent Prime Factor Dig. Year
5128722215910257444431912 ~2015
5128756121910257512243912 ~2015
5128774745330772648471912 ~2016
5128967313151289673131112 ~2016
5129136223110258272446312 ~2015
5129463410310258926820712 ~2015
5129514367110259028734312 ~2015
5129625037110259250074312 ~2015
5129746442310259492884712 ~2015
5129922969730779537818312 ~2016
5130622013910261244027912 ~2015
5130932264310261864528712 ~2015
5131036850310262073700712 ~2015
5131047031330786282187912 ~2016
5131766048310263532096712 ~2015
5132532665910265065331912 ~2015
5132677519110265355038312 ~2015
5132717117330796302703912 ~2016
5132922053910265844107912 ~2015
5134445083110268890166312 ~2015
5134611635910269223271912 ~2015
5134621591110269243182312 ~2015
5135244703110270489406312 ~2015
5135324395951353243959112 ~2016
5136292904310272585808712 ~2015
Exponent Prime Factor Dig. Year
5136691469910273382939912 ~2015
5136744764310273489528712 ~2015
5136822500971915515012712 ~2017
5136851509110273703018312 ~2015
5137246933110274493866312 ~2015
5137272802741098182421712 ~2016
5137404565951374045659112 ~2016
5137516255110275032510312 ~2015
5137753804141102030432912 ~2016
513781157414716...25023914 2023
5137864871910275729743912 ~2015
5137972157941103777263312 ~2016
5138351471910276702943912 ~2015
5138673733110277347466312 ~2015
5138755343910277510687912 ~2015
5138857778310277715556712 ~2015
5138862443910277724887912 ~2015
5139269168310278538336712 ~2015
5139272671110278545342312 ~2015
5139414248310278828496712 ~2015
5139445121910278890243912 ~2015
5139681936130838091616712 ~2016
5139725815110279451630312 ~2015
5139925709910279851419912 ~2015
5140232705910280465411912 ~2015
Exponent Prime Factor Dig. Year
5140637582941125100663312 ~2016
5140714639110281429278312 ~2015
5140919633910281839267912 ~2015
5141025326310282050652712 ~2015
5141088953910282177907912 ~2015
5141157023910282314047912 ~2015
5141184746310282369492712 ~2015
5141186846310282373692712 ~2015
5141395205910282790411912 ~2015
5141707124310283414248712 ~2015
5141864887110283729774312 ~2015
5141936413110283872826312 ~2015
5142107282310284214564712 ~2015
5142240444751422404447112 ~2016
5142311317330853867903912 ~2016
5142611882310285223764712 ~2015
5142650507910285301015912 ~2015
5142699074310285398148712 ~2015
5142796790971999155072712 ~2017
5142959840310285919680712 ~2015
5143622606310287245212712 ~2015
5143781042310287562084712 ~2015
5144311187330865867123912 ~2016
5144432239951444322399112 ~2016
5144481119910288962239912 ~2015
Home
4.828.532 digits
e-mail
25-06-01