Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7875791341347254748047912 ~2017
7875887209115751774418312 ~2016
7875922814315751845628712 ~2016
7876005296315752010592712 ~2016
7876306171115752612342312 ~2016
7876752995915753505991912 ~2016
7877301128315754602256712 ~2016
7878176831915756353663912 ~2016
7878456349115756912698312 ~2016
7879006523915758013047912 ~2016
7879124255915758248511912 ~2016
7879225889915758451779912 ~2016
7879246315747275477894312 ~2017
7879328309915758656619912 ~2016
7879460224163035681792912 ~2018
7880274600778802746007112 ~2018
7880813168315761626336712 ~2016
7881612734315763225468712 ~2016
7882088879915764177759912 ~2016
7882676280147296057680712 ~2017
7882914473915765828947912 ~2016
7883983712315767967424712 ~2016
7884262561115768525122312 ~2016
7884348865115768697730312 ~2016
7884747874163077982992912 ~2018
Exponent Prime Factor Dig. Year
7885654436315771308872712 ~2016
7886460925115772921850312 ~2016
7887036053915774072107912 ~2016
7887146912315774293824712 ~2016
7888325846315776651692712 ~2016
7888529579915777059159912 ~2016
7888706222315777412444712 ~2016
7890072571347340435427912 ~2017
7892710082315785420164712 ~2016
7892803891115785607782312 ~2016
7892953817963143630543312 ~2018
7893051031115786102062312 ~2016
7893300139763146401117712 ~2018
7893433493347360600959912 ~2017
789396227893457...78158314 2023
7894298120315788596240712 ~2016
7894456109915788912219912 ~2016
7895546533115791093066312 ~2016
7896907700315793815400712 ~2016
7896938064147381628384712 ~2017
7897473803915794947607912 ~2016
7898793715747392762294312 ~2017
7899216637115798433274312 ~2016
7899501305915799002611912 ~2016
7900001915915800003831912 ~2016
Exponent Prime Factor Dig. Year
7900078697915800157395912 ~2016
7900282640315800565280712 ~2016
7900674458963205395671312 ~2018
7900874780315801749560712 ~2016
790107281172401...34756914 2024
7901413775915802827551912 ~2016
7901455640315802911280712 ~2016
7901695406315803390812712 ~2016
7901819882315803639764712 ~2016
7902572632163220581056912 ~2018
7902816072147416896432712 ~2017
7902992488147417954928712 ~2017
790340492773208...00646314 2024
7903826402315807652804712 ~2016
7904356559963234852479312 ~2018
7905146155115810292310312 ~2016
7905368774963242950199312 ~2018
7905551678315811103356712 ~2016
7905938809115811877618312 ~2016
7906352252315812704504712 ~2016
7906929719915813859439912 ~2016
7907340737915814681475912 ~2016
7907452435115814904870312 ~2016
7907660173115815320346312 ~2016
7907709596315815419192712 ~2016
Exponent Prime Factor Dig. Year
7908004259347448025555912 ~2017
7908128956163265031648912 ~2018
790824963233283...73309715 2023
7908356958147450141748712 ~2017
7909595348315819190696712 ~2016
7909637858315819275716712 ~2016
7910283290963282266327312 ~2018
7910402305115820804610312 ~2016
7910509430315821018860712 ~2016
7910707556315821415112712 ~2016
7911854497115823708994312 ~2016
7912180719747473084318312 ~2017
7912335842315824671684712 ~2016
7912450873115824901746312 ~2016
7912776524315825553048712 ~2016
7912853063915825706127912 ~2016
7913370272315826740544712 ~2016
7913371393763306971149712 ~2018
7914749491115829498982312 ~2016
7915352605115830705210312 ~2016
7916206735763329653885712 ~2018
7916232788315832465576712 ~2016
7916546990963332375927312 ~2018
7916652560963333220487312 ~2018
7916825975915833651951912 ~2016
Home
4.724.182 digits
e-mail
25-04-13