Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5190869294310381738588712 ~2015
5191090627331146543763912 ~2016
5191140440310382280880712 ~2015
5191825028310383650056712 ~2015
5192032885110384065770312 ~2015
5192540882310385081764712 ~2015
5192664193731155985162312 ~2016
5193031271910386062543912 ~2015
5193070237110386140474312 ~2015
5193394277910386788555912 ~2015
5193513101331161078607912 ~2016
5193681152310387362304712 ~2015
5193765689941550125519312 ~2016
5193922433910387844867912 ~2015
5194089103110388178206312 ~2015
5194370070131166220420712 ~2016
5194651154941557209239312 ~2016
5194742069910389484139912 ~2015
5195034011910390068023912 ~2015
5195379475110390758950312 ~2015
5195382881910390765763912 ~2015
5195723912310391447824712 ~2015
5196806850131180841100712 ~2016
5197216040310394432080712 ~2015
5197241912310394483824712 ~2015
Exponent Prime Factor Dig. Year
5197488373331184930239912 ~2016
5197839638310395679276712 ~2015
5198135293331188811759912 ~2016
5198470481910396940963912 ~2015
5198557531110397115062312 ~2015
5198585792310397171584712 ~2015
5198712991731192277950312 ~2016
5198833590131193001540712 ~2016
5199233341110398466682312 ~2015
5199394255110398788510312 ~2015
519958753011653...34571914 2023
5199782713110399565426312 ~2015
5200031171910400062343912 ~2015
5200148437731200890626312 ~2016
5200196233331201177399912 ~2016
5200368877110400737754312 ~2015
5200499590741603996725712 ~2016
5200600702131203604212712 ~2016
5200655537910401311075912 ~2015
5201871987731211231926312 ~2016
5201944591110403889182312 ~2015
5202902971331217417827912 ~2016
5202957893331217747359912 ~2016
5202989972310405979944712 ~2015
5203083040741624664325712 ~2016
Exponent Prime Factor Dig. Year
5203377199741627017597712 ~2016
5203421119110406842238312 ~2015
5203703364131222220184712 ~2016
5203744136310407488272712 ~2015
5204262571731225575430312 ~2016
5204504665731227027994312 ~2016
5205460897110410921794312 ~2015
5205721051110411442102312 ~2015
5205728413110411456826312 ~2015
5205868213141646945704912 ~2016
5206670099941653360799312 ~2016
5206902469110413804938312 ~2015
5206914973141655319784912 ~2016
5206917301110413834602312 ~2015
5206922387910413844775912 ~2015
5207049437910414098875912 ~2015
5207081803110414163606312 ~2015
5207221817910414443635912 ~2015
5207287099110414574198312 ~2015
5207342948310414685896712 ~2015
5207483006310414966012712 ~2015
5207652205110415304410312 ~2015
5207665813141661326504912 ~2016
520773568091999...01465714 2023
5207987072310415974144712 ~2015
Exponent Prime Factor Dig. Year
5208021218310416042436712 ~2015
5208287927910416575855912 ~2015
5208650809110417301618312 ~2015
5208857012310417714024712 ~2015
5209354801110418709602312 ~2015
5209362535731256175214312 ~2016
5209460212141675681696912 ~2016
5209517839110419035678312 ~2015
5209800851910419601703912 ~2015
5209801126131258806756712 ~2016
520984067992250...73716914 2025
5210042012941680336103312 ~2016
5210130893910420261787912 ~2015
5210164823910420329647912 ~2015
5210188645110420377290312 ~2015
5210866624131265199744712 ~2016
5210907803331265446819912 ~2016
5210973632310421947264712 ~2015
5211232349331267394095912 ~2016
5211244144352112441443112 ~2016
5211332995110422665990312 ~2015
5211496377731268978266312 ~2016
5211987043110423974086312 ~2015
5212109929110424219858312 ~2015
5212647070131275882420712 ~2016
Home
4.828.532 digits
e-mail
25-06-01