Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7917094076315834188152712 ~2016
7917952147115835904294312 ~2016
7918510619347511063715912 ~2017
7918585318163348682544912 ~2018
7919606537915839213075912 ~2016
7919826503915839653007912 ~2016
7919938697915839877395912 ~2016
7920253016315840506032712 ~2016
7920275977115840551954312 ~2016
7920461773115840923546312 ~2016
7920900164963367201319312 ~2018
7922509970315845019940712 ~2016
7923101113115846202226312 ~2016
7923526402147541158412712 ~2017
7923572612315847145224712 ~2016
7923852248315847704496712 ~2016
7925160097115850320194312 ~2016
7925565224315851130448712 ~2016
7925750918315851501836712 ~2016
7926861383915853722767912 ~2016
7926927515915853855031912 ~2016
7926965789915853931579912 ~2016
7927068608315854137216712 ~2016
7927687220315855374440712 ~2016
7928134622315856269244712 ~2016
Exponent Prime Factor Dig. Year
7928964194315857928388712 ~2016
7929115370315858230740712 ~2016
7929228653915858457307912 ~2016
7929733058315859466116712 ~2016
7929871571915859743143912 ~2016
7930346285963442770287312 ~2018
7930565483915861130967912 ~2016
7931553704315863107408712 ~2016
7932454364315864908728712 ~2016
7932550258763460402069712 ~2018
7933047760163464382080912 ~2018
7933462994315866925988712 ~2016
7933922959115867845918312 ~2016
7934638057163477104456912 ~2018
7934709410315869418820712 ~2016
7934807393915869614787912 ~2016
7935310052315870620104712 ~2016
7935367601915870735203912 ~2016
7935959918315871919836712 ~2016
7936213027115872426054312 ~2016
7936563979115873127958312 ~2016
7936762950147620577700712 ~2017
7936944601115873889202312 ~2016
7937015695115874031390312 ~2016
7937159845115874319690312 ~2016
Exponent Prime Factor Dig. Year
7937861609915875723219912 ~2016
7938050219347628301315912 ~2017
7938512711915877025423912 ~2016
7938681706147632090236712 ~2017
7938810046163510480368912 ~2018
7938880274315877760548712 ~2016
7940177323747641063942312 ~2017
7940281651115880563302312 ~2016
7940806717115881613434312 ~2016
7941162257347646973543912 ~2017
7941297302315882594604712 ~2016
7941788510315883577020712 ~2016
7941816436147650898616712 ~2017
794192003272103...46589715 2025
7941972085115883944170312 ~2016
7943726827747662360966312 ~2017
7943840726315887681452712 ~2016
7944890278763559122229712 ~2018
7945097371115890194742312 ~2016
7945523937747673143626312 ~2017
7946712409115893424818312 ~2016
7946785207115893570414312 ~2016
7947577933763580623469712 ~2018
794872861911907...68584114 2024
7948873487915897746975912 ~2016
Exponent Prime Factor Dig. Year
7949886643115899773286312 ~2016
7950003419915900006839912 ~2016
7951340467115902680934312 ~2016
7951355167115902710334312 ~2016
7951372117163610976936912 ~2018
7951435847963611486783312 ~2018
7952366636315904733272712 ~2016
7952489241747714935450312 ~2017
7952870785115905741570312 ~2016
7953235658315906471316712 ~2016
7953907819115907815638312 ~2016
7953950624315907901248712 ~2016
7954002419915908004839912 ~2016
7954477475915908954951912 ~2016
7954843333763638746669712 ~2018
7955345595747732073574312 ~2017
7955755970315911511940712 ~2016
7955904781115911809562312 ~2016
7956624994163652999952912 ~2018
7957059079115914118158312 ~2016
7957104755347742628531912 ~2017
7957983776315915967552712 ~2016
7958190116315916380232712 ~2016
7958192605115916385210312 ~2016
7958334049115916668098312 ~2016
Home
4.724.182 digits
e-mail
25-04-13