Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5282862910742262903285712 ~2016
5282867312310565734624712 ~2015
5282946162131697676972712 ~2016
5283340765142266726120912 ~2016
5284019977110568039954312 ~2015
5284109957910568219915912 ~2015
5284589096310569178192712 ~2015
5284666879331708001275912 ~2016
5284733221110569466442312 ~2015
5284870775331709224651912 ~2016
5284914146310569828292712 ~2015
5285080330131710481980712 ~2016
5285087747373991228462312 ~2017
5285129347142281034776912 ~2016
5285506382310571012764712 ~2015
5285746364310571492728712 ~2015
5286520056131719120336712 ~2016
5286937799910573875599912 ~2015
5287034867942296278943312 ~2016
5287129771110574259542312 ~2015
5287230817110574461634312 ~2015
5288016056310576032112712 ~2015
5288032505910576065011912 ~2015
5288640422310577280844712 ~2015
5289574544310579149088712 ~2015
Exponent Prime Factor Dig. Year
5289642902310579285804712 ~2015
5289717623910579435247912 ~2015
5289724070310579448140712 ~2015
5289761135910579522271912 ~2015
5289915323910579830647912 ~2015
5290458008310580916016712 ~2015
5290641875942325135007312 ~2016
5290814251331744885507912 ~2016
5291032469910582064939912 ~2015
5291339257731748035546312 ~2016
5291359235910582718471912 ~2015
5291462707110582925414312 ~2015
5292012457110584024914312 ~2015
5292052208942336417671312 ~2016
5292201853731753211122312 ~2016
5292239597331753437583912 ~2016
5292444191910584888383912 ~2015
5292883186131757299116712 ~2016
5292943825110585887650312 ~2015
5293553816310587107632712 ~2015
5293599731910587199463912 ~2015
5293734266942349874135312 ~2016
5293770176310587540352712 ~2015
5294516666310589033332712 ~2015
5294560487910589120975912 ~2015
Exponent Prime Factor Dig. Year
5294690101110589380202312 ~2015
5294775635942358205087312 ~2016
5295171878310590343756712 ~2015
5295619525110591239050312 ~2015
5296264721910592529443912 ~2015
5296585074131779510444712 ~2016
5297019791942376158335312 ~2016
5297239658310594479316712 ~2015
5297640197910595280395912 ~2015
5297722039110595444078312 ~2015
5298074412131788446472712 ~2016
5298272267910596544535912 ~2015
5298631943910597263887912 ~2015
5299451533110598903066312 ~2015
5299455410310598910820712 ~2015
5299720843110599441686312 ~2015
5299807565910599615131912 ~2015
5300003359110600006718312 ~2015
5300103338310600206676712 ~2015
5300262431910600524863912 ~2015
530090292614230...35027914 2023
5301031489110602062978312 ~2015
5301265753142410126024912 ~2016
5301401567910602803135912 ~2015
5301410645910602821291912 ~2015
Exponent Prime Factor Dig. Year
5301742801110603485602312 ~2015
5302063034942416504279312 ~2016
5302077362310604154724712 ~2015
5302114049331812684295912 ~2016
5302191895110604383790312 ~2015
5302436749110604873498312 ~2015
5302621963731815731782312 ~2016
5302682629110605365258312 ~2015
5302689149910605378299912 ~2015
5302875307331817251843912 ~2016
5303122699110606245398312 ~2015
5303328803942426630431312 ~2016
5303684461110607368922312 ~2015
5303725124310607450248712 ~2015
5304440717331826644303912 ~2016
5304590153910609180307912 ~2015
5304629975910609259951912 ~2015
5304666151110609332302312 ~2015
5304814361374267401058312 ~2017
5305470653910610941307912 ~2015
5305499137110610998274312 ~2015
5305503548942444028391312 ~2016
5305520531910611041063912 ~2015
5306170404131837022424712 ~2016
5306385872310612771744712 ~2015
Home
4.828.532 digits
e-mail
25-06-01