Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5751597745111503195490312 ~2015
5752012619911504025239912 ~2015
5752815239334516891435912 ~2016
5752844792311505689584712 ~2015
5752951843334517711059912 ~2016
5753597852311507195704712 ~2015
5753644562311507289124712 ~2015
5753710999111507421998312 ~2015
5753837281146030698248912 ~2017
5754027475111508054950312 ~2015
5754721886311509443772712 ~2015
5754871790311509743580712 ~2015
5755045703911510091407912 ~2015
5755101433111510202866312 ~2015
5755337203111510674406312 ~2015
5756163503911512327007912 ~2015
5756291201911512582403912 ~2015
5756367827911512735655912 ~2015
5756859494311513718988712 ~2015
5757253091911514506183912 ~2015
5757264314311514528628712 ~2015
5757849103111515698206312 ~2015
5758042189111516084378312 ~2015
5758200487111516400974312 ~2015
5758555957111517111914312 ~2015
Exponent Prime Factor Dig. Year
5758939206134553635236712 ~2016
5759680697911519361395912 ~2015
5759926637911519853275912 ~2015
5760500611111521001222312 ~2015
5760689401111521378802312 ~2015
5761049546946088396375312 ~2017
5761904912311523809824712 ~2015
5762022128311524044256712 ~2015
5762272757911524545515912 ~2015
5762308106311524616212712 ~2015
5762977313911525954627912 ~2015
5763358952946106871623312 ~2017
5763420145111526840290312 ~2015
5763610357111527220714312 ~2015
5763822776311527645552712 ~2015
5763851202134583107212712 ~2016
5763923993911527847987912 ~2015
5764813380134588880280712 ~2016
5764838134746118705077712 ~2017
5764855937911529711875912 ~2015
5764944133111529888266312 ~2015
5765179982311530359964712 ~2015
5765627738311531255476712 ~2015
5765680020757656800207112 ~2017
5765740757911531481515912 ~2015
Exponent Prime Factor Dig. Year
5765894445734595366674312 ~2016
5766210137334597260823912 ~2016
5766555541111533111082312 ~2015
5766938203111533876406312 ~2015
5767057094311534114188712 ~2015
5767473955746139791645712 ~2017
576843059475676...05184914 2023
5768808755911537617511912 ~2015
5769206806146153654448912 ~2017
5769318262146154546096912 ~2017
5769799855111539599710312 ~2015
5770134785946161078287312 ~2017
5770258329734621549978312 ~2016
5771028490146168227920912 ~2017
5771109529334626657175912 ~2016
5771327297911542654595912 ~2015
5771379655111542759310312 ~2015
5771915824134631494944712 ~2016
5772195914311544391828712 ~2015
5772567473911545134947912 ~2015
5772854482146182835856912 ~2017
5772944309911545888619912 ~2015
5772951053911545902107912 ~2015
5773057735111546115470312 ~2015
5773058653111546117306312 ~2015
Exponent Prime Factor Dig. Year
5773111748946184893991312 ~2017
5773113452311546226904712 ~2015
5773404023911546808047912 ~2015
5773561658311547123316712 ~2015
5773801523911547603047912 ~2015
5774113219111548226438312 ~2015
5774300956134645805736712 ~2016
5774307187111548614374312 ~2015
5774328281911548656563912 ~2015
5774566568311549133136712 ~2015
5774681717911549363435912 ~2015
5774999021911549998043912 ~2015
5775158297911550316595912 ~2015
5775179357911550358715912 ~2015
5775246422311550492844712 ~2015
5775471647334652829883912 ~2016
5775704153911551408307912 ~2015
5775770383334654622299912 ~2016
5775995478134655972868712 ~2016
5776453367911552906735912 ~2015
5776620740311553241480712 ~2015
5776632439111553264878312 ~2015
5776993566757769935667112 ~2017
5777264369911554528739912 ~2015
5777406011911554812023912 ~2015
Home
4.828.532 digits
e-mail
25-06-01