Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
978687585533425...49355114 2024
9786969260319573938520712 ~2017
9787069001919574138003912 ~2017
9787280135919574560271912 ~2017
9787784729919575569459912 ~2017
9787929539919575859079912 ~2017
9788506561778308052493712 ~2018
9788988425919577976851912 ~2017
9789858455919579716911912 ~2017
9790023638978320189111312 ~2018
9790395149358742370895912 ~2018
9790469821119580939642312 ~2017
9791999687919583999375912 ~2017
9792016208319584032416712 ~2017
9792758684319585517368712 ~2017
9792815594319585631188712 ~2017
9793127102319586254204712 ~2017
9793326278978346610231312 ~2018
9793629223119587258446312 ~2017
9793650593919587301187912 ~2017
9794350917758766105506312 ~2018
9795227281119590454562312 ~2017
9795337543119590675086312 ~2017
9796717550319593435100712 ~2017
9797313830319594627660712 ~2017
Exponent Prime Factor Dig. Year
9797335597119594671194312 ~2017
9798446839119596893678312 ~2017
9798622544319597245088712 ~2017
9798879788319597759576712 ~2017
9798923651919597847303912 ~2017
9799086727758794520366312 ~2018
9800400389919600800779912 ~2017
9800836103919601672207912 ~2017
9800856743919601713487912 ~2017
9801629651919603259303912 ~2017
9802298738319604597476712 ~2017
9802308629919604617259912 ~2017
9802318001919604636003912 ~2017
9802722050319605444100712 ~2017
9802794832158816768992712 ~2018
9804149699919608299399912 ~2017
9805360427919610720855912 ~2017
9805692737919611385475912 ~2017
9806361269358838167615912 ~2018
9806471681919612943363912 ~2017
9806555138319613110276712 ~2017
9806880674319613761348712 ~2017
9806939257178455514056912 ~2018
9807152333919614304667912 ~2017
9808897055919617794111912 ~2017
Exponent Prime Factor Dig. Year
9809079451778472635613712 ~2018
9811114109919622228219912 ~2017
981155839012668...82107314 2024
9812160103778497280829712 ~2018
9812469701919624939403912 ~2017
9812531301758875187810312 ~2018
9813980990319627961980712 ~2017
9814526119178516208952912 ~2018
9815229703119630459406312 ~2017
9815528075919631056151912 ~2017
9816282128319632564256712 ~2017
9816347815119632695630312 ~2017
9816665987919633331975912 ~2017
9817110919119634221838312 ~2017
9817267433919634534867912 ~2017
9817317469119634634938312 ~2017
9817413140978539305127312 ~2018
9817872269919635744539912 ~2017
9817945269758907671618312 ~2018
9818209457919636418915912 ~2017
9818702524778549620197712 ~2018
9819118823919638237647912 ~2017
9819195889778553567117712 ~2018
9819230681919638461363912 ~2017
9819761792319639523584712 ~2017
Exponent Prime Factor Dig. Year
9819762920319639525840712 ~2017
9820349151758922094910312 ~2018
9820663163919641326327912 ~2017
9820867727919641735455912 ~2017
9821038546158926231276712 ~2018
9821542502319643085004712 ~2017
9821983380158931900280712 ~2018
9823917803919647835607912 ~2017
9824031175119648062350312 ~2017
9824296084158945776504712 ~2018
9824909300319649818600712 ~2017
9825034406319650068812712 ~2017
9825123458978600987671312 ~2018
9825327322158951963932712 ~2018
9825581803358953490819912 ~2018
9826809917919653619835912 ~2017
9827059376319654118752712 ~2017
9827298206319654596412712 ~2017
9827626217919655252435912 ~2017
9828107900319656215800712 ~2017
9828142813119656285626312 ~2017
9828337468778626699749712 ~2018
9829812803919659625607912 ~2017
9829940923778639527389712 ~2018
9830441063978643528511312 ~2018
Home
4.724.182 digits
e-mail
25-04-13