Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9406163531918812327063912 ~2017
9406486654156438919924712 ~2018
9407285509118814571018312 ~2017
9407516489918815032979912 ~2017
9408283284156449699704712 ~2018
9408395959118816791918312 ~2017
9408523597118817047194312 ~2017
9410396729918820793459912 ~2017
9411827242156470963452712 ~2018
9412738321118825476642312 ~2017
9412794794318825589588712 ~2017
9413822779118827645558312 ~2017
9414456835118828913670312 ~2017
9416122238318832244476712 ~2017
9416281225118832562450312 ~2017
9416507393918833014787912 ~2017
9417444023356504664139912 ~2018
9417446810318834893620712 ~2017
9417514067918835028135912 ~2017
9417547877918835095755912 ~2017
9418659265775349274125712 ~2018
9418695121356512170727912 ~2018
9419318030318838636060712 ~2017
9419463487118838926974312 ~2017
9419693417975357547343312 ~2018
Exponent Prime Factor Dig. Year
9420096013118840192026312 ~2017
9420915200318841830400712 ~2017
9420967364318841934728712 ~2017
9421048249118842096498312 ~2017
9421862429918843724859912 ~2017
9423617330318847234660712 ~2017
9424039843118848079686312 ~2017
9424223786318848447572712 ~2017
9424730603918849461207912 ~2017
9424864618175398916944912 ~2018
9425069342318850138684712 ~2017
9425626217918851252435912 ~2017
9426901622318853803244712 ~2017
9427635674318855271348712 ~2017
9428224177118856448354312 ~2017
9428621813918857243627912 ~2017
9428696153918857392307912 ~2017
9429573209918859146419912 ~2017
9429780571118859561142312 ~2017
9430109071775440872573712 ~2018
9430155464318860310928712 ~2017
9431204815118862409630312 ~2017
9431582066318863164132712 ~2017
9431583427118863166854312 ~2017
9431828960318863657920712 ~2017
Exponent Prime Factor Dig. Year
9432068623175456548984912 ~2018
9432260417918864520835912 ~2017
9432330716318864661432712 ~2017
9432693002318865386004712 ~2017
9432716161118865432322312 ~2017
9433283483918866566967912 ~2017
9433924121918867848243912 ~2017
9434049542318868099084712 ~2017
9434462549918868925099912 ~2017
9434754313118869508626312 ~2017
9435531571118871063142312 ~2017
9436089349175488714792912 ~2018
9436242482318872484964712 ~2017
9436608769118873217538312 ~2017
9436916444318873832888712 ~2017
9437683454318875366908712 ~2017
9437964917918875929835912 ~2017
9438356972318876713944712 ~2017
9438404510318876809020712 ~2017
9440180893756641085362312 ~2018
9440399191118880798382312 ~2017
9441475166318882950332712 ~2017
9441586424318883172848712 ~2017
9441698225918883396451912 ~2017
9443132027918886264055912 ~2017
Exponent Prime Factor Dig. Year
9443189273918886378547912 ~2017
9443468983118886937966312 ~2017
9444206617118888413234312 ~2017
9444433921118888867842312 ~2017
9444536203118889072406312 ~2017
9445134943118890269886312 ~2017
9445326659918890653319912 ~2017
944561424711379...80076714 2024
9446205413918892410827912 ~2017
9446258293756677549762312 ~2018
9446336653775570693229712 ~2018
9446604326318893208652712 ~2017
9447653618318895307236712 ~2017
9447943999118895887998312 ~2017
9447981320318895962640712 ~2017
9447997952318895995904712 ~2017
9448620662318897241324712 ~2017
9448804757918897609515912 ~2017
9449242319918898484639912 ~2017
9449446340318898892680712 ~2017
9450062892156700377352712 ~2018
9450390005918900780011912 ~2017
9450624772175604998176912 ~2018
9450998966318901997932712 ~2017
9451012736318902025472712 ~2017
Home
4.724.182 digits
e-mail
25-04-13