Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1043172099373004...46185714 2024
10432003430320864006860712 ~2017
10432471867120864943734312 ~2017
10432795214320865590428712 ~2017
10432931981920865863963912 ~2017
1043321839573484...44163914 2024
10433778758320867557516712 ~2017
10434995315920869990631912 ~2017
10435608328162613649968712 ~2018
1043639514592442...64140714 2024
10437842393920875684787912 ~2017
10438702913920877405827912 ~2017
10438763515120877527030312 ~2017
10439000025762634000154312 ~2018
10440590110162643540660712 ~2018
10442019143920884038287912 ~2017
10442248841920884497683912 ~2017
10443421051120886842102312 ~2017
10443767444320887534888712 ~2017
10444744981120889489962312 ~2017
10445369132320890738264712 ~2017
10445669978320891339956712 ~2017
10445834981920891669963912 ~2017
10446054896320892109792712 ~2017
10446090902320892181804712 ~2017
Exponent Prime Factor Dig. Year
10446228569920892457139912 ~2017
10446574003362679444019912 ~2018
10447418143120894836286312 ~2017
10448985421120897970842312 ~2017
10449279555762695677334312 ~2018
10449523019362697138115912 ~2018
10451191057120902382114312 ~2017
10451587229920903174459912 ~2017
10452752260162716513560712 ~2018
10454001341920908002683912 ~2017
10454249623120908499246312 ~2017
10456699370320913398740712 ~2017
10457247007120914494014312 ~2017
10457436910162744621460712 ~2018
10457761616320915523232712 ~2017
10458334369120916668738312 ~2017
10459565731120919131462312 ~2017
10459946078320919892156712 ~2017
10460303003920920606007912 ~2017
10460365853920920731707912 ~2017
10461338341120922676682312 ~2017
10461872813920923745627912 ~2017
10462388744320924777488712 ~2017
10463489581120926979162312 ~2017
10463531827362781190963912 ~2018
Exponent Prime Factor Dig. Year
10467042943120934085886312 ~2017
10467237085120934474170312 ~2017
10467933077920935866155912 ~2017
10468854565362813127391912 ~2018
10469808005920939616011912 ~2017
1047042263113518...04049714 2024
10471170773920942341547912 ~2017
1047142817395466...06775914 2024
10472260286320944520572712 ~2017
10473364747120946729494312 ~2017
10473561832162841370992712 ~2018
10475499775120950999550312 ~2017
10476943844320953887688712 ~2017
10477912301920955824603912 ~2017
10478220467920956440935912 ~2017
10478875505920957751011912 ~2017
10478931523120957863046312 ~2017
10479233643762875401862312 ~2018
10479616856320959233712712 ~2017
10479662366320959324732712 ~2017
10480771587762884629526312 ~2018
10482518929120965037858312 ~2017
10482830381920965660763912 ~2017
10482992779362897956675912 ~2018
10483328411920966656823912 ~2017
Exponent Prime Factor Dig. Year
10483977527920967955055912 ~2017
10484852377120969704754312 ~2017
10485541501120971083002312 ~2017
10486389492162918336952712 ~2018
10486400519920972801039912 ~2017
10486590413362919542479912 ~2018
10487163785920974327571912 ~2017
10488963157120977926314312 ~2017
10489316011120978632022312 ~2017
10489339673920978679347912 ~2017
10489692092320979384184712 ~2017
10490622421120981244842312 ~2017
10491403280320982806560712 ~2017
10493784449920987568899912 ~2017
10496345437120992690874312 ~2017
10496816852320993633704712 ~2017
10497270133120994540266312 ~2017
10497518354320995036708712 ~2017
10498074989920996149979912 ~2017
10498106963920996213927912 ~2017
10498513229920997026459912 ~2017
10499317855120998635710312 ~2017
1049935036212183...75316914 2024
10499768204320999536408712 ~2017
10500312331121000624662312 ~2017
Home
4.724.182 digits
e-mail
25-04-13