Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9497867953118995735906312 ~2017
9498520691356991124147912 ~2018
9498631199918997262399912 ~2017
949888311292963...31224914 2024
9499395257975995162063312 ~2018
9499643951918999287903912 ~2017
9499782787118999565574312 ~2017
9499791197918999582395912 ~2017
9499859948318999719896712 ~2017
9500736991119001473982312 ~2017
9501304808319002609616712 ~2017
9501363983919002727967912 ~2017
9502268071357013608427912 ~2018
9502301534976018412279312 ~2018
9502855981757017135890312 ~2018
9503137951119006275902312 ~2017
9503654509119007309018312 ~2017
9504181557757025089346312 ~2018
9504258880157025553280712 ~2018
950498647337737...89266314 2025
9505119668319010239336712 ~2017
9505143313119010286626312 ~2017
9505446493119010892986312 ~2017
9505954607919011909215912 ~2017
9505968283119011936566312 ~2017
Exponent Prime Factor Dig. Year
9506748038319013496076712 ~2017
9508009022319016018044712 ~2017
9509010653357054063919912 ~2018
9509545187357057271123912 ~2018
9509839499919019678999912 ~2017
9510443282319020886564712 ~2017
9510590771976084726175312 ~2018
9511427564319022855128712 ~2017
9512268493119024536986312 ~2017
9512588300319025176600712 ~2017
9513140404176105123232912 ~2018
9513476918319026953836712 ~2017
9513554713119027109426312 ~2017
9513799844319027599688712 ~2017
9515671675119031343350312 ~2017
9515851813119031703626312 ~2017
9515941889919031883779912 ~2017
951637331634111...72641714 2025
9516542828319033085656712 ~2017
9517026164319034052328712 ~2017
9517979159919035958319912 ~2017
9518095873119036191746312 ~2017
9518849909919037699819912 ~2017
9519393403757116360422312 ~2018
9519807625119039615250312 ~2017
Exponent Prime Factor Dig. Year
9520241911119040483822312 ~2017
9520357418319040714836712 ~2017
9521270327976170162623312 ~2018
9521462693919042925387912 ~2017
9521668178319043336356712 ~2017
9522272635357133635811912 ~2018
9522434027357134604163912 ~2018
9522490268319044980536712 ~2017
9522943966157137663796712 ~2018
9523374804157140248824712 ~2018
9523408094319046816188712 ~2017
9524518172319049036344712 ~2017
9524582537919049165075912 ~2017
952464506595429...87563114 2023
9524790955119049581910312 ~2017
9524897095119049794190312 ~2017
9524901793119049803586312 ~2017
9525326015919050652031912 ~2017
9526015168157156091008712 ~2018
9526211917176209695336912 ~2018
952628277471846...17368715 2023
9526392106176211136848912 ~2018
9526684709919053369419912 ~2017
9527242226319054484452712 ~2017
9527570669919055141339912 ~2017
Exponent Prime Factor Dig. Year
9528784589919057569179912 ~2017
9529050211757174301270312 ~2018
9530248855176241990840912 ~2018
9530263073919060526147912 ~2017
9530593871919061187743912 ~2017
9530937221919061874443912 ~2017
9531323027919062646055912 ~2017
9531839285919063678571912 ~2017
9532016507919064033015912 ~2017
953213557491317...64511915 2024
9532643318319065286636712 ~2017
9533125922319066251844712 ~2017
9534527521119069055042312 ~2017
9535334363919070668727912 ~2017
9535376315919070752631912 ~2017
9535613050157213678300712 ~2018
9536081732319072163464712 ~2017
9536775583119073551166312 ~2017
9537395306319074790612712 ~2017
9537509948319075019896712 ~2017
9538143685119076287370312 ~2017
9538388648319076777296712 ~2017
9539043253119078086506312 ~2017
9539801704176318413632912 ~2018
9540139934319080279868712 ~2017
Home
4.724.182 digits
e-mail
25-04-13