Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9540279584319080559168712 ~2017
954093060291908...20580114 2024
9541069801119082139602312 ~2017
9541182133119082364266312 ~2017
9541735813757250414882312 ~2018
9542278445919084556891912 ~2017
9545048680157270292080712 ~2018
9545705891919091411783912 ~2017
9545768700157274612200712 ~2018
9546305774319092611548712 ~2017
9546778063119093556126312 ~2017
9546955178976375641431312 ~2018
9546996534157281979204712 ~2018
9547082311119094164622312 ~2017
9547317392319094634784712 ~2017
9548303696319096607392712 ~2017
9548497592319096995184712 ~2017
9548901510157293409060712 ~2018
9549006137919098012275912 ~2017
9549271391357295628347912 ~2018
9549355226319098710452712 ~2017
9549996256776399970053712 ~2018
9550441196319100882392712 ~2017
9550442453919100884907912 ~2017
9550802077119101604154312 ~2017
Exponent Prime Factor Dig. Year
9550802552319101605104712 ~2017
9550867019919101734039912 ~2017
9551593345119103186690312 ~2017
9553466447919106932895912 ~2017
9553552897119107105794312 ~2017
9553605517119107211034312 ~2017
9554326394319108652788712 ~2017
9554507227757327043366312 ~2018
9554766650319109533300712 ~2017
9556412405919112824811912 ~2017
9556429363357338576179912 ~2018
9557785354157346712124712 ~2018
9557987131119115974262312 ~2017
9558262550319116525100712 ~2017
9558296273357349777639912 ~2018
9558690941919117381883912 ~2017
9561275201919122550403912 ~2017
9562817688157376906128712 ~2018
9563061331119126122662312 ~2017
9563537383119127074766312 ~2017
9563788583919127577167912 ~2017
9564034171119128068342312 ~2017
9564519254319129038508712 ~2017
9565223387919130446775912 ~2017
9566579474319133158948712 ~2017
Exponent Prime Factor Dig. Year
9566707099119133414198312 ~2017
9567049822176536398576912 ~2018
9567846188319135692376712 ~2017
9568185221919136370443912 ~2017
9568475765919136951531912 ~2017
9568799309919137598619912 ~2017
9569543425176556347400912 ~2018
9570010549357420063295912 ~2018
9570424513776563396109712 ~2018
9571302968319142605936712 ~2017
9571920137976575361103312 ~2018
9572764933119145529866312 ~2017
9574005068319148010136712 ~2017
9574244045919148488091912 ~2017
9575132083119150264166312 ~2017
9575465237919150930475912 ~2017
9576139733919152279467912 ~2017
9576180560319152361120712 ~2017
9576478342776611826741712 ~2018
9576538573119153077146312 ~2017
9576876242319153752484712 ~2017
9577498486176619987888912 ~2018
9578277485357469664911912 ~2018
9578654525919157309051912 ~2017
9578806969119157613938312 ~2017
Exponent Prime Factor Dig. Year
9578843527776630748221712 ~2018
9578972299776631778397712 ~2018
9579560059119159120118312 ~2017
9580402887757482417326312 ~2018
9580509377357483056263912 ~2018
958075728791833...49040715 2023
9581240646157487443876712 ~2018
9581529325119163058650312 ~2017
9582593369919165186739912 ~2017
9582780871119165561742312 ~2017
9582799910319165599820712 ~2017
9582919354157497516124712 ~2018
9582941495919165882991912 ~2017
9583236937119166473874312 ~2017
9583286690319166573380712 ~2017
9583554086319167108172712 ~2017
9584681030319169362060712 ~2017
9584696365757508178194312 ~2018
9584826851357508961107912 ~2018
9585698039919171396079912 ~2017
9586163531919172327063912 ~2017
9586627925976693023407312 ~2018
9586818263919173636527912 ~2017
9587154211119174308422312 ~2017
9587177884157523067304712 ~2018
Home
4.724.182 digits
e-mail
25-04-13