Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
421148203438422964068711 ~2014
421152801718423056034311 ~2014
421159296838423185936711 ~2014
421164396118423287922311 ~2014
421188868198423777363911 ~2014
421197377398423947547911 ~2014
421206174718424123494311 ~2014
421206849238424136984711 ~2014
421221543598424430871911 ~2014
421231605118424632102311 ~2014
421239540238424790804711 ~2014
4212627461325275764767912 ~2015
421268747998425374959911 ~2014
421298094838425961896711 ~2014
421303808998426076179911 ~2014
421306708872805...81074314 2024
421357391998427147839911 ~2014
421368313918427366278311 ~2014
421368556198427371123911 ~2014
421373476438427469528711 ~2014
4213819261725282915570312 ~2015
4214179843733713438749712 ~2015
421477241638429544832711 ~2014
4215768351725294610110312 ~2015
421581321838431626436711 ~2014
Exponent Prime Factor Dig. Year
421593158998431863179911 ~2014
421595928238431918564711 ~2014
421619168518432383370311 ~2014
421633990798432679815911 ~2014
4216519681133732157448912 ~2015
421656331438433126628711 ~2014
421682071318433641426311 ~2014
421687874398433757487911 ~2014
421692315238433846304711 ~2014
421709156398434183127911 ~2014
421731258118434625162311 ~2014
421753041838435060836711 ~2014
421775511598435510231911 ~2014
421782222598435644451911 ~2014
421787047318435740946311 ~2014
421818627118436372542311 ~2014
421858163038437163260711 ~2014
421860672718437213454311 ~2014
421885636918437712738311 ~2014
421886348998437726979911 ~2014
421898885998437977719911 ~2014
421910539798438210795911 ~2014
421921756438438435128711 ~2014
4219477880933755823047312 ~2015
422025183838440503676711 ~2014
Exponent Prime Factor Dig. Year
422052096598441041931911 ~2014
422056777198441135543911 ~2014
4220797099942207970999112 ~2016
422085534238441710684711 ~2014
4221240784733769926277712 ~2015
422154578638443091572711 ~2014
4221630380959102825332712 ~2016
422169524518443390490311 ~2014
422180221798443604435911 ~2014
422192469118443849382311 ~2014
422201005198444020103911 ~2014
422222431918444448638311 ~2014
422223307438444466148711 ~2014
4222343099325334058595912 ~2015
422289906598445798131911 ~2014
422292041638445840832711 ~2014
422316779638446335592711 ~2014
422389200718447784014311 ~2014
422406500518448130010311 ~2014
422410029838448200596711 ~2014
4224153605359138150474312 ~2016
422420807638448416152711 ~2014
422428462798448569255911 ~2014
4224346871325346081227912 ~2015
422496425038449928500711 ~2014
Exponent Prime Factor Dig. Year
422497593238449951864711 ~2014
422523554998450471099911 ~2014
422532589198450651783911 ~2014
422537096398450741927911 ~2014
422548684798450973695911 ~2014
422553848518451076970311 ~2014
422575919638451518392711 ~2014
422577023398451540467911 ~2014
422589474598451789491911 ~2014
422591502598451830051911 ~2014
4226029456733808235653712 ~2015
4226361255725358167534312 ~2015
422638044838452760896711 ~2014
422640718798452814375911 ~2014
4226573281325359439687912 ~2015
422668288198453365763911 ~2014
4226848948133814791584912 ~2015
422688397798453767955911 ~2014
4227146236733817169893712 ~2015
4227152475176088744551912 ~2016
422715929038454318580711 ~2014
422739067438454781348711 ~2014
422746690438454933808711 ~2014
422746715998454934319911 ~2014
422757920638455158412711 ~2014
Home
4.933.056 digits
e-mail
25-07-20