Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10164060205120328120410312 ~2017
10165042229920330084459912 ~2017
10166116367920332232735912 ~2017
10167487478320334974956712 ~2017
10167624209920335248419912 ~2017
10168876693761013260162312 ~2018
10169194862320338389724712 ~2017
10170007482161020044892712 ~2018
10170345790161022074740712 ~2018
10171329092320342658184712 ~2017
10171570930161029425580712 ~2018
10172413543361034481259912 ~2018
10172993120320345986240712 ~2017
10173966365920347932731912 ~2017
10174566235120349132470312 ~2017
10175426749361052560495912 ~2018
10176562213120353124426312 ~2017
1017675642732605...45388914 2024
10177406771361064440627912 ~2018
10177576400320355152800712 ~2017
10178212754320356425508712 ~2017
10178375869761070255218312 ~2018
10178666576320357333152712 ~2017
1017895481711475...84795115 2025
10180778833761084673002312 ~2018
Exponent Prime Factor Dig. Year
10181116121920362232243912 ~2017
10181260823920362521647912 ~2017
10181715371920363430743912 ~2017
10184128675361104772051912 ~2018
1018457163611214...90231315 2025
1018497969291328...19541715 2025
10185267421120370534842312 ~2017
10185377141920370754283912 ~2017
10185641575120371283150312 ~2017
10185935294320371870588712 ~2017
10186201469361117208815912 ~2018
10186809403361120856419912 ~2018
10187017664320374035328712 ~2017
10187373575920374747151912 ~2017
10188542806161131256836712 ~2018
10188790460320377580920712 ~2017
10189088665120378177330312 ~2017
10190820098320381640196712 ~2017
10191252068320382504136712 ~2017
10191579265120383158530312 ~2017
10192895996320385791992712 ~2017
10193697571761162185430312 ~2018
10194692954320389385908712 ~2017
10194929353120389858706312 ~2017
10195193659120390387318312 ~2017
Exponent Prime Factor Dig. Year
10195369195120390738390312 ~2017
10195801343920391602687912 ~2017
10196038931920392077863912 ~2017
10197509213920395018427912 ~2017
10197661627120395323254312 ~2017
10198012430320396024860712 ~2017
10198482907120396965814312 ~2017
10198921109920397842219912 ~2017
10200442724320400885448712 ~2017
10201039664320402079328712 ~2017
10201414962161208489772712 ~2018
10201825250320403650500712 ~2017
10201928329120403856658312 ~2017
10202334593920404669187912 ~2017
10202647667920405295335912 ~2017
10204050763120408101526312 ~2017
10204659905920409319811912 ~2017
10205513414320411026828712 ~2017
10207057435120414114870312 ~2017
1020706675192470...53959914 2024
10209036673361254220039912 ~2018
10209228899920418457799912 ~2017
10210112203120420224406312 ~2017
10210484156320420968312712 ~2017
1021053593337412...87575914 2024
Exponent Prime Factor Dig. Year
10210730864320421461728712 ~2017
10210852030161265112180712 ~2018
10212955343361277732059912 ~2018
10213051444161278308664712 ~2018
10213575655361281453931912 ~2018
10213968721120427937442312 ~2017
10214175056320428350112712 ~2017
10214255497120428510994312 ~2017
10214498723920428997447912 ~2017
1021529561175618...86435114 2024
10215344042320430688084712 ~2017
10215740743120431481486312 ~2017
10216037738320432075476712 ~2017
10216512314320433024628712 ~2017
10216796251120433592502312 ~2017
10216908253120433816506312 ~2017
10216991780320433983560712 ~2017
10218439601920436879203912 ~2017
10219404975761316429854312 ~2018
10219520879920439041759912 ~2017
10219684601920439369203912 ~2017
10220017391920440034783912 ~2017
10220352667120440705334312 ~2017
10220881442320441762884712 ~2017
10221257439761327544638312 ~2018
Home
4.724.182 digits
e-mail
25-04-13