Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11329609277922659218555912 ~2017
11330533991922661067983912 ~2017
11330711845122661423690312 ~2017
11331600701922663201403912 ~2017
11331637676322663275352712 ~2017
11332300040322664600080712 ~2017
11332720778322665441556712 ~2017
11333069605122666139210312 ~2017
11333604611922667209223912 ~2017
11334259423122668518846312 ~2017
11334380885922668761771912 ~2017
11334908591922669817183912 ~2017
11336180537922672361075912 ~2017
11336738933922673477867912 ~2017
11336771996322673543992712 ~2017
11337804530322675609060712 ~2017
11337807457122675614914312 ~2017
11338055735922676111471912 ~2017
11338264225122676528450312 ~2017
11338412429922676824859912 ~2017
11338754389768032526338312 ~2019
11339677364322679354728712 ~2017
11340664259922681328519912 ~2017
11341822496322683644992712 ~2017
11342122142322684244284712 ~2017
Exponent Prime Factor Dig. Year
11342203807122684407614312 ~2017
11343075499122686150998312 ~2017
11343277561122686555122312 ~2017
11343506353122687012706312 ~2017
11344082468322688164936712 ~2017
11347518445768085110674312 ~2019
11347538912322695077824712 ~2017
11348180971122696361942312 ~2017
11348189903922696379807912 ~2017
11348578493922697156987912 ~2017
11348751536322697503072712 ~2017
1134904247212247...09475914 2024
11350521481122701042962312 ~2017
11351123414322702246828712 ~2017
11351630615922703261231912 ~2017
11351652059922703304119912 ~2017
11351923387122703846774312 ~2017
11352068477922704136955912 ~2017
11352766615122705533230312 ~2017
11353817221122707634442312 ~2017
1135385995792997...28885714 2024
11354167259922708334519912 ~2017
11354309945922708619891912 ~2017
11354413609122708827218312 ~2017
11354431099122708862198312 ~2017
Exponent Prime Factor Dig. Year
11356442492322712884984712 ~2017
11357044033768142264202312 ~2019
11357234156322714468312712 ~2017
11357953607922715907215912 ~2017
11358249181122716498362312 ~2017
11358823517922717647035912 ~2017
1135887810795361...66928914 2023
11358972851922717945703912 ~2017
11359706023122719412046312 ~2017
11360402042322720804084712 ~2017
11360474245122720948490312 ~2017
11360551411122721102822312 ~2017
11361899048322723798096712 ~2017
11362079879922724159759912 ~2017
11364585446322729170892712 ~2017
11364722305122729444610312 ~2017
1136473590473000...78840914 2024
11365272194322730544388712 ~2017
11365379893122730759786312 ~2017
11366769775122733539550312 ~2017
11367044369922734088739912 ~2017
11368270355922736540711912 ~2017
11369490032322738980064712 ~2017
11369819040168218914240712 ~2019
11370939989922741879979912 ~2017
Exponent Prime Factor Dig. Year
11373399281922746798563912 ~2017
11374042183122748084366312 ~2017
11374628083122749256166312 ~2017
11375431781922750863563912 ~2017
11377829066322755658132712 ~2017
11378395964322756791928712 ~2017
11380095116322760190232712 ~2017
11380552748322761105496712 ~2017
11381035766322762071532712 ~2017
11381719909122763439818312 ~2017
11384083429122768166858312 ~2017
11384793872322769587744712 ~2017
11385512335368313074011912 ~2019
11385669007122771338014312 ~2017
11386086619368316519715912 ~2019
11386539367122773078734312 ~2017
11389263027768335578166312 ~2019
11389541238168337247428712 ~2019
11390255439768341532638312 ~2019
11390259806322780519612712 ~2017
11394375443922788750887912 ~2017
11394591871122789183742312 ~2017
11395085206168370511236712 ~2019
11395408949922790817899912 ~2017
11396241347922792482695912 ~2017
Home
4.724.182 digits
e-mail
25-04-13