Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6969135955755753087645712 ~2017
6969373496313938746992712 ~2016
6969561566313939123132712 ~2016
6969796030141818776180712 ~2017
6970048007913940096015912 ~2016
6970207514313940415028712 ~2016
697081837812495...79359914 2023
6971400721113942801442312 ~2016
6971643217113943286434312 ~2016
6971669099955773352799312 ~2017
6971770520313943541040712 ~2016
6973082095341838492571912 ~2017
6973197181113946394362312 ~2016
6974665538313949331076712 ~2016
6974825426313949650852712 ~2016
6975325525113950651050312 ~2016
6975738611955805908895312 ~2017
6976297321113952594642312 ~2016
6976392456141858354736712 ~2017
697661489931622...87516716 2024
6976872649113953745298312 ~2016
6976938194313953876388712 ~2016
6977284591113954569182312 ~2016
6977618439741865710638312 ~2017
6977660306313955320612712 ~2016
Exponent Prime Factor Dig. Year
697827058693168...46452714 2023
6978746185113957492370312 ~2016
6979093118313958186236712 ~2016
6979227065913958454131912 ~2016
6979741177341878447063912 ~2017
6979830176313959660352712 ~2016
6980430085113960860170312 ~2016
6980710214313961420428712 ~2016
6981005243913962010487912 ~2016
6981967676313963935352712 ~2016
6982745774313965491548712 ~2016
6983295285741899771714312 ~2017
6983725940313967451880712 ~2016
6983811908313967623816712 ~2016
6984443033913968886067912 ~2016
6984661361913969322723912 ~2016
6984765602313969531204712 ~2016
6984874195113969748390312 ~2016
6984935478141909612868712 ~2017
6985023405741910140434312 ~2017
6985850689113971701378312 ~2016
6985903939113971807878312 ~2016
6986521375113973042750312 ~2016
6987522383913975044767912 ~2016
6987719485113975438970312 ~2016
Exponent Prime Factor Dig. Year
6987781702141926690212712 ~2017
6987873925113975747850312 ~2016
6988148351913976296703912 ~2016
6988333565341930001391912 ~2017
6988682018313977364036712 ~2016
6988930907913977861815912 ~2016
6989012948313978025896712 ~2016
6989074268313978148536712 ~2016
6989237552313978475104712 ~2016
6989670625113979341250312 ~2016
6989700950955917607607312 ~2017
6989975164141939850984712 ~2017
6990288341913980576683912 ~2016
6990321899913980643799912 ~2016
6990506641113981013282312 ~2016
6990533005113981066010312 ~2016
6990947873913981895747912 ~2016
6991197823113982395646312 ~2016
6991813625913983627251912 ~2016
6992237330313984474660712 ~2016
6992563143169925631431112 ~2017
6992719781955941758255312 ~2017
6992786581113985573162312 ~2016
6992939707341957638243912 ~2017
6993067705113986135410312 ~2016
Exponent Prime Factor Dig. Year
6993331095741959986574312 ~2017
6993435187113986870374312 ~2016
6993534884955948279079312 ~2017
6993585974313987171948712 ~2016
6994707959913989415919912 ~2016
6994992355113989984710312 ~2016
6995051645913990103291912 ~2016
6995489719113990979438312 ~2016
6995996754769959967547112 ~2017
6996031274313992062548712 ~2016
6996490747113992981494312 ~2016
6996502364313993004728712 ~2016
6996523538313993047076712 ~2016
6996579023913993158047912 ~2016
6996593227113993186454312 ~2016
6996672793113993345586312 ~2016
6996911767155975294136912 ~2017
6996929539113993859078312 ~2016
6997427155113994854310312 ~2016
6997492952313994985904712 ~2016
6997520156313995040312712 ~2016
6997832627913995665255912 ~2016
6998030263113996060526312 ~2016
6999318404313998636808712 ~2016
6999367349913998734699912 ~2016
Home
4.828.532 digits
e-mail
25-06-01