Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11574983041123149966082312 ~2017
11576019203923152038407912 ~2017
11576900709769461404258312 ~2019
11577613946323155227892712 ~2017
11577872947123155745894312 ~2017
11579174771923158349543912 ~2017
11579478647923158957295912 ~2017
11579911301923159822603912 ~2017
11580495866323160991732712 ~2017
11584615928323169231856712 ~2017
11586540583769519243502312 ~2019
11586579269923173158539912 ~2017
11586965718169521794308712 ~2019
11587626763123175253526312 ~2017
11588157080323176314160712 ~2017
11588324672323176649344712 ~2017
11589233972323178467944712 ~2017
11589611779123179223558312 ~2017
11589728062169538368372712 ~2019
11589871052323179742104712 ~2017
11591223706169547342236712 ~2019
11591981336323183962672712 ~2017
11592617465923185234931912 ~2017
11592724933123185449866312 ~2017
11593121429923186242859912 ~2017
Exponent Prime Factor Dig. Year
11593275002323186550004712 ~2017
11593432951769560597710312 ~2019
11593445641123186891282312 ~2017
11593813687123187627374312 ~2017
11594305538323188611076712 ~2017
11594379103123188758206312 ~2017
11594623091923189246183912 ~2017
11595157153123190314306312 ~2017
11595276511123190553022312 ~2017
11595388472323190776944712 ~2017
11595454574323190909148712 ~2017
11596005371923192010743912 ~2017
11596225817923192451635912 ~2017
11598165823123196331646312 ~2017
11598177025123196354050312 ~2017
11598285313123196570626312 ~2017
11598877361923197754723912 ~2017
11599057855123198115710312 ~2017
11599265881123198531762312 ~2017
11599920062323199840124712 ~2017
11601079841923202159683912 ~2017
11601238063769607428382312 ~2019
11601358385923202716771912 ~2017
11601407812169608446872712 ~2019
11601616295923203232591912 ~2017
Exponent Prime Factor Dig. Year
11602217618323204435236712 ~2017
11602444304323204888608712 ~2017
11602493441923204986883912 ~2017
11602917305369617503831912 ~2019
11602948603769617691622312 ~2019
11603729467123207458934312 ~2017
11604881413123209762826312 ~2017
11606017358323212034716712 ~2017
11606129723923212259447912 ~2017
11606151222169636907332712 ~2019
11606729282323213458564712 ~2017
11607232043923214464087912 ~2017
11607335735923214671471912 ~2017
1160754269693342...96707314 2023
11608208793769649252762312 ~2019
11608473336169650840016712 ~2019
11609253361123218506722312 ~2017
11609399873923218799747912 ~2017
11609801648323219603296712 ~2017
11610060343123220120686312 ~2017
11610277517923220555035912 ~2017
11610892459369665354755912 ~2019
11611088951923222177903912 ~2017
1161209977791117...86339915 2025
11612141138323224282276712 ~2017
Exponent Prime Factor Dig. Year
11612468912323224937824712 ~2017
11613455531923226911063912 ~2017
11613648739123227297478312 ~2017
11613734017123227468034312 ~2017
11614072816169684436896712 ~2019
11615238114169691428684712 ~2019
11615545790323231091580712 ~2017
11616062392169696374352712 ~2019
11616423554323232847108712 ~2017
11616894343123233788686312 ~2017
11617221107923234442215912 ~2017
11618909913769713459482312 ~2019
11619001130323238002260712 ~2017
11619732066169718392396712 ~2019
11620068581923240137163912 ~2017
11620676882323241353764712 ~2017
11622929256169737575536712 ~2019
11624261645923248523291912 ~2017
11624480021923248960043912 ~2017
11625702428323251404856712 ~2017
11625984251923251968503912 ~2017
11626108621123252217242312 ~2017
11626248583123252497166312 ~2017
11626710089923253420179912 ~2017
11626776049123253552098312 ~2017
Home
4.724.182 digits
e-mail
25-04-13