Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11626805293123253610586312 ~2017
11627159645923254319291912 ~2017
11627310055123254620110312 ~2017
11627340073123254680146312 ~2017
11628059810323256119620712 ~2017
11630011579123260023158312 ~2017
11630055278323260110556712 ~2017
11630229980323260459960712 ~2017
11630929109923261858219912 ~2017
11631713606323263427212712 ~2017
11631773431123263546862312 ~2017
11631915017923263830035912 ~2017
11632295177923264590355912 ~2017
11632573721923265147443912 ~2017
11632743155369796458931912 ~2019
11632911487123265822974312 ~2017
11633317523923266635047912 ~2017
11633454464323266908928712 ~2017
11635410731923270821463912 ~2017
11635546331923271092663912 ~2017
11635887067123271774134312 ~2017
11636014453123272028906312 ~2017
11636323841923272647683912 ~2017
11637002875123274005750312 ~2017
11639609017769837654106312 ~2019
Exponent Prime Factor Dig. Year
11639988923923279977847912 ~2017
11640028631923280057263912 ~2017
1164010140837286...81595914 2023
11641868990323283737980712 ~2017
11642471065769854826394312 ~2019
11643106565923286213131912 ~2017
11643915967123287831934312 ~2017
11644508132323289016264712 ~2017
11644594207123289188414312 ~2017
11644940456323289880912712 ~2017
11645714849923291429699912 ~2017
11646244892323292489784712 ~2017
11646419707123292839414312 ~2017
1164647193799654...65191115 2025
11647520330323295040660712 ~2017
11648052356323296104712712 ~2017
11648066205769888397234312 ~2019
11648112335923296224671912 ~2017
11649015110323298030220712 ~2017
11649560372323299120744712 ~2017
11649760364323299520728712 ~2017
11649780181123299560362312 ~2017
11650528967923301057935912 ~2017
11650882433923301764867912 ~2017
11651162951923302325903912 ~2017
Exponent Prime Factor Dig. Year
11651175289369907051735912 ~2019
11651719835923303439671912 ~2017
11652370616323304741232712 ~2017
11652485366323304970732712 ~2017
11654009395123308018790312 ~2017
11654584495123309168990312 ~2017
11655863048323311726096712 ~2017
11656069496323312138992712 ~2017
11656248692323312497384712 ~2017
11656396609123312793218312 ~2017
11656706336323313412672712 ~2017
11657250731923314501463912 ~2017
1165898295131147...24079315 2024
11659140467923318280935912 ~2017
11659789598323319579196712 ~2017
11660895391123321790782312 ~2017
11661522601123323045202312 ~2017
11662756844323325513688712 ~2017
11664504851923329009703912 ~2017
11664863097769989178586312 ~2019
11665459478323330918956712 ~2017
11665746137923331492275912 ~2017
11667896636323335793272712 ~2017
11667956280170007737680712 ~2019
11668292732323336585464712 ~2017
Exponent Prime Factor Dig. Year
11669340716323338681432712 ~2017
11669362423123338724846312 ~2017
11670527510323341055020712 ~2017
11671160641123342321282312 ~2017
11671283258323342566516712 ~2017
1167161914431704...95067914 2024
11672399827123344799654312 ~2017
11673759073123347518146312 ~2017
11673759296323347518592712 ~2017
11673876854323347753708712 ~2017
11674447379923348894759912 ~2017
1167562265539153...61755314 2024
11676102305923352204611912 ~2017
11676908035770061448214312 ~2019
11679182537923358365075912 ~2017
11679283772323358567544712 ~2017
11679425733770076554402312 ~2019
11679601170170077607020712 ~2019
11680461515923360923031912 ~2017
11681069675923362139351912 ~2017
1168108522392803...53736114 2024
11681618405923363236811912 ~2017
11682607430323365214860712 ~2017
11683177073923366354147912 ~2017
11683321159123366642318312 ~2017
Home
4.724.182 digits
e-mail
25-04-13