Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12003736465124007472930312 ~2018
12004262611124008525222312 ~2018
12005248466324010496932712 ~2018
12006783541772040701250312 ~2019
12007670045924015340091912 ~2018
12008317591124016635182312 ~2018
12008390816324016781632712 ~2018
12008625637372051753823912 ~2019
12008698471124017396942312 ~2018
12009854417924019708835912 ~2018
12010538023124021076046312 ~2018
12010594219372063565315912 ~2019
12010643459924021286919912 ~2018
12013151756324026303512712 ~2018
12013991381924027982763912 ~2018
12016356490172098138940712 ~2019
12016501424324033002848712 ~2018
12018495109124036990218312 ~2018
12019004707772114028246312 ~2019
12020032994324040065988712 ~2018
12020140915124040281830312 ~2018
12020267725124040535450312 ~2018
12023268506324046537012712 ~2018
12023334878324046669756712 ~2018
12024078764324048157528712 ~2018
Exponent Prime Factor Dig. Year
12024166709924048333419912 ~2018
12024366553372146199319912 ~2019
12024660014324049320028712 ~2018
12024885618172149313708712 ~2019
12025088881124050177762312 ~2018
1202540862373655...21604914 2024
12025739263124051478526312 ~2018
12025794731924051589463912 ~2018
12025954913924051909827912 ~2018
12027027302324054054604712 ~2018
12027675365924055350731912 ~2018
12027711823124055423646312 ~2018
12028280027924056560055912 ~2018
12030817831124061635662312 ~2018
12031752881924063505763912 ~2018
12032818272172196909632712 ~2019
12032948059124065896118312 ~2018
12033658463924067316927912 ~2018
12033670487924067340975912 ~2018
12034491664172206949984712 ~2019
12034598989124069197978312 ~2018
1203485292891027...01280715 2023
12035353267124070706534312 ~2018
12035443292324070886584712 ~2018
12036064243124072128486312 ~2018
Exponent Prime Factor Dig. Year
12036221735924072443471912 ~2018
12036639413924073278827912 ~2018
12038018657924076037315912 ~2018
12038055343124076110686312 ~2018
12038732196172232393176712 ~2019
12039131665124078263330312 ~2018
12039882541124079765082312 ~2018
12040081217924080162435912 ~2018
12041215093124082430186312 ~2018
12041517902324083035804712 ~2018
12044001373124088002746312 ~2018
12044960027924089920055912 ~2018
12045203891924090407783912 ~2018
12045890867372275345203912 ~2019
12046038350324092076700712 ~2018
12046288009124092576018312 ~2018
12046374517372278247103912 ~2019
12047631661772285789970312 ~2019
12048995161124097990322312 ~2018
12050147114324100294228712 ~2018
12050184586172301107516712 ~2019
12051870979772311225878312 ~2019
12053028149924106056299912 ~2018
12053528838172321173028712 ~2019
12053637379124107274758312 ~2018
Exponent Prime Factor Dig. Year
12054042391124108084782312 ~2018
12054196013924108392027912 ~2018
12054532841924109065683912 ~2018
12054570487124109140974312 ~2018
12055851241124111702482312 ~2018
12057573253124115146506312 ~2018
12057804949124115609898312 ~2018
12057926815772347560894312 ~2019
12059556073124119112146312 ~2018
12060347669924120695339912 ~2018
12060989915924121979831912 ~2018
12061348811924122697623912 ~2018
12063200630324126401260712 ~2018
12063612903772381677422312 ~2019
12064819394324129638788712 ~2018
12065219053124130438106312 ~2018
12066785915924133571831912 ~2018
12067043617124134087234312 ~2018
12069232961924138465923912 ~2018
12069504559124139009118312 ~2018
12069728851372418373107912 ~2019
12070585286324141170572712 ~2018
12070874936324141749872712 ~2018
1207138582636880...20991114 2024
12071458559924142917119912 ~2018
Home
4.724.182 digits
e-mail
25-04-13