Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11938390945123876781890312 ~2018
11938569749923877139499912 ~2018
11939361875923878723751912 ~2018
11940246611923880493223912 ~2018
11941096769923882193539912 ~2018
11941289431123882578862312 ~2018
11942897858323885795716712 ~2018
11942941004323885882008712 ~2018
1194357421372460...88022314 2024
11943671486323887342972712 ~2018
11944331681923888663363912 ~2018
11944846009123889692018312 ~2018
11945072821371670436927912 ~2019
11945726588323891453176712 ~2018
11946443450323892886900712 ~2018
11947807117123895614234312 ~2018
11948014319923896028639912 ~2018
11950015016323900030032712 ~2018
11950520786323901041572712 ~2018
11951042834323902085668712 ~2018
11951335803771708014822312 ~2019
11952233204323904466408712 ~2018
11953384118323906768236712 ~2018
1195515891892869...40536114 2024
11955225350323910450700712 ~2018
Exponent Prime Factor Dig. Year
11955860587123911721174312 ~2018
11956270057123912540114312 ~2018
11957012725123914025450312 ~2018
1195751092433372...80652714 2023
11957579630323915159260712 ~2018
11958533918323917067836712 ~2018
1195917513738012...41991114 2023
11959789628323919579256712 ~2018
11959800787123919601574312 ~2018
11960599914171763599484712 ~2019
1196131215972846...94008714 2024
11961621185923923242371912 ~2018
11962183813123924367626312 ~2018
11963426030323926852060712 ~2018
11963770453123927540906312 ~2018
11964025418323928050836712 ~2018
11964216355123928432710312 ~2018
11964422959123928845918312 ~2018
11964979769923929959539912 ~2018
11965024838323930049676712 ~2018
11965177715923930355431912 ~2018
11965213931923930427863912 ~2018
11965497229123930994458312 ~2018
11966107682323932215364712 ~2018
11966454989923932909979912 ~2018
Exponent Prime Factor Dig. Year
11966787662323933575324712 ~2018
11969849168323939698336712 ~2018
11970373253923940746507912 ~2018
11970530258323941060516712 ~2018
11970554902171823329412712 ~2019
11971083139123942166278312 ~2018
11971224233923942448467912 ~2018
11971934210323943868420712 ~2018
11972397845923944795691912 ~2018
11973001481923946002963912 ~2018
11974560137923949120275912 ~2018
11975065801123950131602312 ~2018
11975542982323951085964712 ~2018
11976329191123952658382312 ~2018
11976963341923953926683912 ~2018
11977016462323954032924712 ~2018
11977224373771863346242312 ~2019
11977449479923954898959912 ~2018
11977608007123955216014312 ~2018
11978135174323956270348712 ~2018
1197972031091233...20227115 2023
11979737677123959475354312 ~2018
11980734747771884408486312 ~2019
11981432528323962865056712 ~2018
11983636603123967273206312 ~2018
Exponent Prime Factor Dig. Year
11986602470323973204940712 ~2018
11987327698171923966188712 ~2019
11987736739123975473478312 ~2018
11987903468323975806936712 ~2018
11989165615123978331230312 ~2018
11989504664323979009328712 ~2018
11989767881923979535763912 ~2018
11990112524323980225048712 ~2018
11990257433923980514867912 ~2018
1199265650292878...60696114 2024
11994224304171965345824712 ~2019
11995460423923990920847912 ~2018
11995860146323991720292712 ~2018
11995922074171975532444712 ~2019
11996071021123992142042312 ~2018
11997557072323995114144712 ~2018
11999367656323998735312712 ~2018
11999575049923999150099912 ~2018
11999623736323999247472712 ~2018
11999735556171998413336712 ~2019
12000567883372003407299912 ~2019
12001127398172006764388712 ~2019
12002575910324005151820712 ~2018
12003394705772020368234312 ~2019
12003538010324007076020712 ~2018
Home
4.724.182 digits
e-mail
25-04-13