Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12633850721925267701443912 ~2018
12634190941125268381882312 ~2018
12634191845925268383691912 ~2018
12634328581125268657162312 ~2018
12634376609925268753219912 ~2018
12635468167125270936334312 ~2018
12635861683125271723366312 ~2018
12636010897125272021794312 ~2018
12636407633925272815267912 ~2018
12636440888325272881776712 ~2018
1263681997071819...75780914 2024
12638695789125277391578312 ~2018
12639310883925278621767912 ~2018
12639450163125278900326312 ~2018
12641125181925282250363912 ~2018
12641163545925282327091912 ~2018
12641352331125282704662312 ~2018
12641391685125282783370312 ~2018
12642258947925284517895912 ~2018
12642326954325284653908712 ~2018
12643476769125286953538312 ~2018
12643673891925287347783912 ~2018
12644680889925289361779912 ~2018
12645658853925291317707912 ~2018
12645853088325291706176712 ~2018
Exponent Prime Factor Dig. Year
12646015202325292030404712 ~2018
12647446199925294892399912 ~2018
12648859465125297718930312 ~2018
12649213189125298426378312 ~2018
12649259738325298519476712 ~2018
12651975659375911853955912 ~2019
12652026917375912161503912 ~2019
12652207094325304414188712 ~2018
12652369127925304738255912 ~2018
12652442618325304885236712 ~2018
12652857698325305715396712 ~2018
12653273401125306546802312 ~2018
12654656792325309313584712 ~2018
12655004078325310008156712 ~2018
12655274291925310548583912 ~2018
12655677380325311354760712 ~2018
12657123611925314247223912 ~2018
12658927333775953564002312 ~2019
12659692712325319385424712 ~2018
12661178927375967073563912 ~2019
12661236032325322472064712 ~2018
12662729516325325459032712 ~2018
12664130297925328260595912 ~2018
12664324040325328648080712 ~2018
12665279463775991676782312 ~2019
Exponent Prime Factor Dig. Year
12666048521925332097043912 ~2018
12666197725125332395450312 ~2018
12666935005776001610034312 ~2019
12667270766325334541532712 ~2018
12667699118325335398236712 ~2018
12668069171925336138343912 ~2018
12668277721125336555442312 ~2018
12668530537125337061074312 ~2018
12668567297925337134595912 ~2018
12668568074325337136148712 ~2018
12668819417925337638835912 ~2018
12669124609125338249218312 ~2018
12669581317125339162634312 ~2018
1266969393711439...12545715 2025
12670309136325340618272712 ~2018
12671046149925342092299912 ~2018
12671599396176029596376712 ~2019
12672671861925345343723912 ~2018
12673322222325346644444712 ~2018
12676689649125353379298312 ~2018
12677492300325354984600712 ~2018
12677847452325355694904712 ~2018
1267808871432332...23431314 2024
12678214843125356429686312 ~2018
12679119313125358238626312 ~2018
Exponent Prime Factor Dig. Year
12680127019125360254038312 ~2018
12681974405925363948811912 ~2018
12682197419925364394839912 ~2018
12682606772325365213544712 ~2018
12682909961925365819923912 ~2018
12682981555125365963110312 ~2018
12683475794325366951588712 ~2018
12683921738325367843476712 ~2018
12685505960325371011920712 ~2018
12686137613925372275227912 ~2018
12686871710325373743420712 ~2018
12689820853376138925119912 ~2019
12691854067776151124406312 ~2019
12692376515925384753031912 ~2018
12694501939125389003878312 ~2018
12695059736325390119472712 ~2018
12695065505925390131011912 ~2018
12695084699376170508195912 ~2019
12695210132325390420264712 ~2018
12695210294325390420588712 ~2018
12695564069925391128139912 ~2018
12695623904325391247808712 ~2018
12696353342325392706684712 ~2018
12696938513925393877027912 ~2018
12697307209125394614418312 ~2018
Home
4.724.182 digits
e-mail
25-04-13