Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
777754445599970...92463914 2024
7777856900315555713800712 ~2016
7778336477346670018863912 ~2017
7778392831115556785662312 ~2016
7778580248315557160496712 ~2016
7779075062315558150124712 ~2016
7779523865915559047731912 ~2016
7779713333915559426667912 ~2016
7779842192315559684384712 ~2016
7780325951915560651903912 ~2016
7780612543115561225086312 ~2016
7781229421346687376527912 ~2017
7782033713915564067427912 ~2016
7782301325915564602651912 ~2016
7782590768315565181536712 ~2016
7783038482315566076964712 ~2016
7784009875115568019750312 ~2016
7784374286315568748572712 ~2016
7784402321915568804643912 ~2016
7785826117115571652234312 ~2016
7785832001915571664003912 ~2016
778611114231868...74152114 2024
7786639190315573278380712 ~2016
7786894351115573788702312 ~2016
7788083606315576167212712 ~2016
Exponent Prime Factor Dig. Year
7789189163915578378327912 ~2016
7789348993115578697986312 ~2016
7789410881915578821763912 ~2016
7789582991915579165983912 ~2016
7789820243915579640487912 ~2016
7790024637746740147826312 ~2017
7790126281115580252562312 ~2016
7790469314315580938628712 ~2016
7790513705915581027411912 ~2016
7790640187115581280374312 ~2016
7791557065115583114130312 ~2016
7791632395115583264790312 ~2016
7791961976315583923952712 ~2016
7792232960315584465920712 ~2016
7792286861915584573723912 ~2016
7792635406146755812436712 ~2017
7793414557115586829114312 ~2016
7793736335915587472671912 ~2016
7793793299346762759795912 ~2017
7794079097915588158195912 ~2016
7794140840315588281680712 ~2016
7794505316315589010632712 ~2016
7794772721915589545443912 ~2016
7796014325915592028651912 ~2016
7796193962315592387924712 ~2016
Exponent Prime Factor Dig. Year
7796676296315593352592712 ~2016
7797245753915594491507912 ~2016
7797406477115594812954312 ~2016
7798237688315596475376712 ~2016
7798355999915596711999912 ~2016
7798541143346791246859912 ~2017
7798672524146792035144712 ~2017
779874526391360...40241715 2023
7798924429746793546578312 ~2017
7799065001915598130003912 ~2016
7799861960315599723920712 ~2016
7799886908315599773816712 ~2016
7800576931115601153862312 ~2016
7801396987746808381926312 ~2017
7801472299762411778397712 ~2018
7803277943915606555887912 ~2016
7803573137915607146275912 ~2016
7804111619915608223239912 ~2016
7804170247115608340494312 ~2016
7804757555915609515111912 ~2016
7805235961115610471922312 ~2016
7805381683115610763366312 ~2016
7805546194162444369552912 ~2018
7806343025962450744207312 ~2018
7807154609915614309219912 ~2016
Exponent Prime Factor Dig. Year
7807445920762459567365712 ~2018
7807505797115615011594312 ~2016
7807567741115615135482312 ~2016
7807786106315615572212712 ~2016
780823158531035...82107915 2025
7808448347915616896695912 ~2016
7808724319115617448638312 ~2016
7808982733115617965466312 ~2016
7809059975915618119951912 ~2016
7809741493115619482986312 ~2016
7809963116315619926232712 ~2016
7810605602315621211204712 ~2016
7810772837962486182703312 ~2018
7810801297115621602594312 ~2016
781104668518810...60792914 2025
7812219434315624438868712 ~2016
7812895732146877374392712 ~2017
7813488490146880930940712 ~2017
7813715069915627430139912 ~2016
7813765877915627531755912 ~2016
7814574919762516599357712 ~2018
7814652335915629304671912 ~2016
7814708585962517668687312 ~2018
7815067681115630135362312 ~2016
7815506744315631013488712 ~2016
Home
4.828.532 digits
e-mail
25-06-01