Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
13307679281926615358563912 ~2018
13308713395126617426790312 ~2018
13308839282326617678564712 ~2018
13309510921126619021842312 ~2018
13311032977126622065954312 ~2018
13311393026326622786052712 ~2018
13312875158326625750316712 ~2018
13315675987126631351974312 ~2018
13316613191926633226383912 ~2018
13317671516326635343032712 ~2018
1332026261892850...00444714 2024
13321500469126643000938312 ~2018
13321822717126643645434312 ~2018
13321854359926643708719912 ~2018
13322671736326645343472712 ~2018
13327363379926654726759912 ~2018
13327424855926654849711912 ~2018
13328440153126656880306312 ~2018
13328637889126657275778312 ~2018
13328927924326657855848712 ~2018
13329197011126658394022312 ~2018
13329433598326658867196712 ~2018
1333004870692985...10345714 2024
13332039023926664078047912 ~2018
13334352521926668705043912 ~2018
Exponent Prime Factor Dig. Year
13336187408326672374816712 ~2018
13338180919126676361838312 ~2018
13338357341926676714683912 ~2018
13338555869926677111739912 ~2018
13338708806326677417612712 ~2018
13339256492326678512984712 ~2018
13339276142326678552284712 ~2018
13340448919126680897838312 ~2018
13341048965926682097931912 ~2018
13342916564326685833128712 ~2018
13344074402326688148804712 ~2018
13344352667926688705335912 ~2018
13345017815926690035631912 ~2018
13345080908326690161816712 ~2018
13345411565926690823131912 ~2018
13345770079126691540158312 ~2018
13345839770326691679540712 ~2018
13345970549926691941099912 ~2018
13345970585926691941171912 ~2018
13347125251126694250502312 ~2018
13349165437126698330874312 ~2018
1335159255234833...03932714 2023
13352649451126705298902312 ~2018
13355039375926710078751912 ~2018
13356767189926713534379912 ~2018
Exponent Prime Factor Dig. Year
13358078021926716156043912 ~2018
13358302676326716605352712 ~2018
13359429023926718858047912 ~2018
13360056955126720113910312 ~2018
13360531376326721062752712 ~2018
13360916387926721832775912 ~2018
13362036625126724073250312 ~2018
13363235731126726471462312 ~2018
13363543595926727087191912 ~2018
13363805531926727611063912 ~2018
13363954292326727908584712 ~2018
13364191693126728383386312 ~2018
13365154265926730308531912 ~2018
1336541778971577...99184714 2024
13365630296326731260592712 ~2018
13366024919926732049839912 ~2018
13370096947126740193894312 ~2018
13370477713126740955426312 ~2018
13370535965926741071931912 ~2018
1337132375091099...23239915 2025
13371453649126742907298312 ~2018
13372112492326744224984712 ~2018
13372121969926744243939912 ~2018
13372846097926745692195912 ~2018
13373182513126746365026312 ~2018
Exponent Prime Factor Dig. Year
13373313241126746626482312 ~2018
13373948923126747897846312 ~2018
13375472719126750945438312 ~2018
13375954711126751909422312 ~2018
13376521124326753042248712 ~2018
1337659901032153...06583115 2025
13377575645926755151291912 ~2018
13377940003126755880006312 ~2018
13378436651926756873303912 ~2018
13378947665926757895331912 ~2018
13379516195926759032391912 ~2018
13380827120326761654240712 ~2018
13383707413126767414826312 ~2018
13384569349126769138698312 ~2018
1338477603113212...47464114 2024
13385972375926771944751912 ~2018
13386553496326773106992712 ~2018
13386644053126773288106312 ~2018
13387670522326775341044712 ~2018
13388134381126776268762312 ~2018
13389520117126779040234312 ~2018
13389778507126779557014312 ~2018
13390110833926780221667912 ~2018
13390117595926780235191912 ~2018
13390889501926781779003912 ~2018
Home
4.724.182 digits
e-mail
25-04-13