Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9172968218318345936436712 ~2017
9174041690318348083380712 ~2017
9174676879118349353758312 ~2017
9175783324155054699944712 ~2018
9175928252318351856504712 ~2017
9177491858318354983716712 ~2017
9177629845173421038760912 ~2018
9177892661918355785323912 ~2017
9178328851118356657702312 ~2017
9178727353118357454706312 ~2017
9179082341918358164683912 ~2017
9179182093118358364186312 ~2017
9179310673755075864042312 ~2018
9179546447918359092895912 ~2017
9179592409118359184818312 ~2017
9179900065118359800130312 ~2017
9180164549918360329099912 ~2017
9180236105973441888847312 ~2018
9180440111918360880223912 ~2017
918150740813580...89159114 2023
9183007387118366014774312 ~2017
9183386115755100316694312 ~2018
9183773533118367547066312 ~2017
9183864351755103186110312 ~2018
9184268629755105611778312 ~2018
Exponent Prime Factor Dig. Year
9184389599918368779199912 ~2017
9184601977355107611863912 ~2018
918524571731019...46203115 2023
9186712004318373424008712 ~2017
9187713923918375427847912 ~2017
9188126134173505009072912 ~2018
9188265836318376531672712 ~2017
9188291027918376582055912 ~2017
9188628158973509025271312 ~2018
9188634133118377268266312 ~2017
9188676001118377352002312 ~2017
9188954411918377908823912 ~2017
9189045560318378091120712 ~2017
9189385136318378770272712 ~2017
9189907514318379815028712 ~2017
9190126433355140758599912 ~2018
9190804493918381608987912 ~2017
9190922791118381845582312 ~2017
9191032604318382065208712 ~2017
9191435885918382871771912 ~2017
9191479832318382959664712 ~2017
9191969449118383938898312 ~2017
9192073514318384147028712 ~2017
9194357708318388715416712 ~2017
9195416159918390832319912 ~2017
Exponent Prime Factor Dig. Year
9196282652318392565304712 ~2017
9196809923973574479391312 ~2018
9197290283918394580567912 ~2017
9197608334318395216668712 ~2017
9197660177918395320355912 ~2017
9197945905118395891810312 ~2017
9198767960318397535920712 ~2017
9198822181755192933090312 ~2018
9200099308155200595848712 ~2018
9200859637118401719274312 ~2017
9201749195918403498391912 ~2017
9202143394155212860364712 ~2018
9202234783173617878264912 ~2018
9202539679118405079358312 ~2017
9202732376318405464752712 ~2017
9203165368773625322949712 ~2018
9203358650318406717300712 ~2017
9204024791918408049583912 ~2017
9205519044155233114264712 ~2018
9206360486318412720972712 ~2017
9206562401918413124803912 ~2017
9206563164155239378984712 ~2018
9207368521118414737042312 ~2017
9207483281918414966563912 ~2017
920772157075966...77813714 2023
Exponent Prime Factor Dig. Year
9208657582173669260656912 ~2018
9208787309918417574619912 ~2017
9209178508773673428069712 ~2018
9209725645118419451290312 ~2017
9210411514155262469084712 ~2018
9211151957918422303915912 ~2017
9212773943918425547887912 ~2017
9212977778318425955556712 ~2017
9213025291118426050582312 ~2017
9214796249918429592499912 ~2017
9214834400318429668800712 ~2017
9215446523918430893047912 ~2017
9215563979918431127959912 ~2017
9215712624155294275744712 ~2018
9216644957918433289915912 ~2017
9216752387918433504775912 ~2017
9217425001118434850002312 ~2017
9217636783118435273566312 ~2017
9218253757118436507514312 ~2017
9218913697118437827394312 ~2017
9219528967118439057934312 ~2017
9219956893118439913786312 ~2017
9221022049118442044098312 ~2017
9221277416318442554832712 ~2017
922162372631386...84355315 2025
Home
4.724.182 digits
e-mail
25-04-13