Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
408070549198161410983911 ~2014
408071065918161421318311 ~2014
408078881518161577630311 ~2014
4080930456124485582736712 ~2015
408096567598161931351911 ~2014
408104229238162084584711 ~2014
4081251198124487507188712 ~2015
408149633038162992660711 ~2014
4081542151132652337208912 ~2015
408154599838163091996711 ~2014
408216529198164330583911 ~2014
4082292411140822924111112 ~2016
408234662518164693250311 ~2014
408255471598165109431911 ~2014
408262285198165245703911 ~2014
408269206918165384138311 ~2014
4082894089132663152712912 ~2015
408293600518165872010311 ~2014
408298578238165971564711 ~2014
4083060717724498364306312 ~2015
408314492518166289850311 ~2014
408355384798167107695911 ~2014
4083589499324501536995912 ~2015
4083719645357172075034312 ~2016
408373249438167464988711 ~2014
Exponent Prime Factor Dig. Year
4083941843932671534751312 ~2015
408418455718168369114311 ~2014
4084491204124506947224712 ~2015
408450448438169008968711 ~2014
408481204798169624095911 ~2014
408502856998170057139911 ~2014
408504422398170088447911 ~2014
408527708518170554170311 ~2014
408538345198170766903911 ~2014
408546417838170928356711 ~2014
408552722038171054440711 ~2014
408553191118171063822311 ~2014
408563183518171263670311 ~2014
4085690914732685527317712 ~2015
4085703102124514218612712 ~2015
408597393838171947876711 ~2014
4085985307173547735527912 ~2016
408604356598172087131911 ~2014
4086249177765379986843312 ~2016
408627931438172558628711 ~2014
4086418377724518510266312 ~2015
408643207438172864148711 ~2014
408650691598173013831911 ~2014
408654366598173087331911 ~2014
408706543438174130868711 ~2014
Exponent Prime Factor Dig. Year
408730698238174613964711 ~2014
4087547438957225664144712 ~2016
408770713318175414266311 ~2014
408796287118175925742311 ~2014
408801277198176025543911 ~2014
408830083438176601668711 ~2014
408840617638176812352711 ~2014
408857191094876...10491918 2025
4088693680732709549445712 ~2015
408923483038178469660711 ~2014
408929305798178586115911 ~2014
408941587438178831748711 ~2014
408945006238178900124711 ~2014
408952683118179053662311 ~2014
408965891998179317839911 ~2014
408978488991100...53831115 2025
408986674798179733495911 ~2014
408988301398179766027911 ~2014
408991232038179824640711 ~2014
409002487318180049746311 ~2014
409003393918180067878311 ~2014
409014508198180290163911 ~2014
4090201081732721608653712 ~2015
409022361598180447231911 ~2014
409031380198180627603911 ~2014
Exponent Prime Factor Dig. Year
409057511638181150232711 ~2014
4090903029724545418178312 ~2015
409096719838181934396711 ~2014
409102586638182051732711 ~2014
409104754918182095098311 ~2014
4091332121324547992727912 ~2015
4091560797724549364786312 ~2015
409156881471378...67909715 2025
409196623918183932478311 ~2014
409223551918184471038311 ~2014
409224226318184484526311 ~2014
409328652838186573056711 ~2014
409339833238186796664711 ~2014
4093408449765494535195312 ~2016
409373672398187473447911 ~2014
409416422398188328447911 ~2014
409422735838188454716711 ~2014
409433761198188675223911 ~2014
4094408604765510537675312 ~2016
409446825118188936502311 ~2014
409455531238189110624711 ~2014
409456343998189126879911 ~2014
409476087118189521742311 ~2014
4094786596340947865963112 ~2016
409507755718190155114311 ~2014
Home
4.933.056 digits
e-mail
25-07-20