Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
15271927379930543854759912 ~2018
15272884049930545768099912 ~2018
15273279548330546559096712 ~2018
15274565735930549131471912 ~2018
15274773587930549547175912 ~2018
15275369851130550739702312 ~2018
15275774894330551549788712 ~2018
15276547337930553094675912 ~2018
15281681287130563362574312 ~2018
15282407267930564814535912 ~2018
15282665413130565330826312 ~2018
15283210165130566420330312 ~2018
15283745474330567490948712 ~2018
15284286428330568572856712 ~2018
15284376601130568753202312 ~2018
15285881857130571763714312 ~2018
15286273283930572546567912 ~2018
1528730243833821...09575114 2024
15291153389930582306779912 ~2018
15292041011930584082023912 ~2018
1529302409175597...17562314 2023
15293377346330586754692712 ~2018
15293528671130587057342312 ~2018
15295264795130590529590312 ~2018
15296128615130592257230312 ~2018
Exponent Prime Factor Dig. Year
15297864104330595728208712 ~2018
15298012034330596024068712 ~2018
15298116121130596232242312 ~2018
15299455370330598910740712 ~2018
15300401401130600802802312 ~2018
15300884627930601769255912 ~2018
1530161902871621...17042314 2025
15303825869930607651739912 ~2018
15304711267130609422534312 ~2018
15304868483930609736967912 ~2018
15306841759130613683518312 ~2018
15307126591130614253182312 ~2018
15307749920330615499840712 ~2018
15309130196330618260392712 ~2018
15310058312330620116624712 ~2018
1531205479971822...11643115 2024
15312792313130625584626312 ~2018
15312989089130625978178312 ~2018
15314364518330628729036712 ~2018
15314969456330629938912712 ~2018
15315171949130630343898312 ~2018
15315230935130630461870312 ~2018
15315678943130631357886312 ~2018
15316605257930633210515912 ~2018
15320016851930640033703912 ~2018
Exponent Prime Factor Dig. Year
15320547440330641094880712 ~2018
15322802882330645605764712 ~2018
15322894532330645789064712 ~2018
15323865938330647731876712 ~2018
15324804769130649609538312 ~2018
15326554937930653109875912 ~2018
15326867993930653735987912 ~2018
15327408302330654816604712 ~2018
15330639079130661278158312 ~2018
15331371197930662742395912 ~2018
15331397795930662795591912 ~2018
15332972909930665945819912 ~2018
15333987455930667974911912 ~2018
15334130828330668261656712 ~2018
15336203779130672407558312 ~2018
15338420336330676840672712 ~2018
15338823188330677646376712 ~2018
15339546722330679093444712 ~2018
15340117609130680235218312 ~2018
1534042494611285...04831915 2023
15340929941930681859883912 ~2018
15341499173930682998347912 ~2018
15341698787930683397575912 ~2018
15341964068330683928136712 ~2018
15342064196330684128392712 ~2018
Exponent Prime Factor Dig. Year
15342208670330684417340712 ~2018
15343284019130686568038312 ~2018
15345037813130690075626312 ~2018
1534571307911611...33055115 2025
15345807721130691615442312 ~2018
1534916582631031...35273715 2023
15349294741130698589482312 ~2018
15349379447930698758895912 ~2018
15349740353930699480707912 ~2018
15349927652330699855304712 ~2018
15350926753130701853506312 ~2018
15352406965130704813930312 ~2018
15352603903130705207806312 ~2018
15352630568330705261136712 ~2018
15352691120330705382240712 ~2018
15354338389130708676778312 ~2018
15354632671130709265342312 ~2018
15355179908330710359816712 ~2018
15355581241130711162482312 ~2018
15356232608330712465216712 ~2018
15356732083130713464166312 ~2018
15363589208330727178416712 ~2018
15363876641930727753283912 ~2018
15366273089930732546179912 ~2018
15367949084330735898168712 ~2018
Home
4.724.182 digits
e-mail
25-04-13