Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
8965356541117930713082312 ~2017
8965562123917931124247912 ~2017
8965622125117931244250312 ~2017
8966008883917932017767912 ~2017
8966871103117933742206312 ~2017
8967072301117934144602312 ~2017
8967074215117934148430312 ~2017
8967327661117934655322312 ~2017
8967568253917935136507912 ~2017
8967603139117935206278312 ~2017
8968085062171744680496912 ~2018
896883584297372...62863914 2024
8969107537117938215074312 ~2017
8969991521917939983043912 ~2017
8970166109917940332219912 ~2017
8970243113917940486227912 ~2017
8970377413117940754826312 ~2017
8970731227353824387363912 ~2018
8970956969917941913939912 ~2017
8971293578317942587156712 ~2017
8971342367353828054203912 ~2018
8971538155117943076310312 ~2017
8972001614317944003228712 ~2017
897201910212942...65488914 2024
8972673877117945347754312 ~2017
Exponent Prime Factor Dig. Year
8973314438317946628876712 ~2017
897382205533374...92792914 2024
8974007891917948015783912 ~2017
8974674691171797397528912 ~2018
8974727647117949455294312 ~2017
8975005973917950011947912 ~2017
8975350709917950701419912 ~2017
8975386511917950773023912 ~2017
8975527505917951055011912 ~2017
8975633591917951267183912 ~2017
8976294912153857769472712 ~2018
8978329241917956658483912 ~2017
897882995832460...08574314 2024
8980742826153884456956712 ~2018
8980907575753885445454312 ~2018
8982371103753894226622312 ~2018
8982379304317964758608712 ~2017
8982775251753896651510312 ~2018
8983235677171865885416912 ~2018
8985063659353910381955912 ~2018
8985377165917970754331912 ~2017
8985555587917971111175912 ~2017
8985708151117971416302312 ~2017
8985877097917971754195912 ~2017
898613548512318...55155914 2024
Exponent Prime Factor Dig. Year
8986434355771891474845712 ~2018
8987122619917974245239912 ~2017
8987353409917974706819912 ~2017
8988246851917976493703912 ~2017
8988458764153930752584712 ~2018
8989171195753935027174312 ~2018
8989646759917979293519912 ~2017
8990037301117980074602312 ~2017
8990358157753942148946312 ~2018
8990925679117981851358312 ~2017
8990950267117981900534312 ~2017
8991037354171928298832912 ~2018
8991492746317982985492712 ~2017
8991935633971935485071312 ~2018
8992397234317984794468712 ~2017
8992535351917985070703912 ~2017
8992548053917985096107912 ~2017
8993286161917986572323912 ~2017
8993290243117986580486312 ~2017
8993312068153959872408712 ~2018
8993387131117986774262312 ~2017
8993457277117986914554312 ~2017
8993543268153961259608712 ~2018
8993566916317987133832712 ~2017
8994324149917988648299912 ~2017
Exponent Prime Factor Dig. Year
8994411217117988822434312 ~2017
8994463430317988926860712 ~2017
8994686675917989373351912 ~2017
8995203956317990407912712 ~2017
8995228544317990457088712 ~2017
8995464953917990929907912 ~2017
8995543145917991086291912 ~2017
8997365228317994730456712 ~2017
8997708577117995417154312 ~2017
8998183421917996366843912 ~2017
8998793891917997587783912 ~2017
8999222903917998445807912 ~2017
8999495150317998990300712 ~2017
8999526457117999052914312 ~2017
9000480533918000961067912 ~2017
9001095071354006570427912 ~2018
9001179668318002359336712 ~2017
9001552895918003105791912 ~2017
9001598383118003196766312 ~2017
9001678963118003357926312 ~2017
9001725470318003450940712 ~2017
9001733041354010398247912 ~2018
9002119984772016959877712 ~2018
9002294894318004589788712 ~2017
9002713700318005427400712 ~2017
Home
4.828.532 digits
e-mail
25-06-01