Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
16636140638333272281276712 ~2019
16638544069133277088138312 ~2019
16640184500333280369000712 ~2019
16641590390333283180780712 ~2019
16642993499933285986999912 ~2019
16643453065133286906130312 ~2019
16643490781133286981562312 ~2019
16647130471133294260942312 ~2019
16647333955133294667910312 ~2019
16647414823133294829646312 ~2019
16650639373133301278746312 ~2019
16652062811933304125623912 ~2019
16654005572333308011144712 ~2019
16654140338333308280676712 ~2019
16654434416333308868832712 ~2019
16654480331933308960663912 ~2019
1665587192532398...57243314 2024
16656605027933313210055912 ~2019
16658885360333317770720712 ~2019
16659564833933319129667912 ~2019
16660538834333321077668712 ~2019
16661344931933322689863912 ~2019
16662208483133324416966312 ~2019
16662257096333324514192712 ~2019
16666109353133332218706312 ~2019
Exponent Prime Factor Dig. Year
16668345185933336690371912 ~2019
16668526657133337053314312 ~2019
16669356109133338712218312 ~2019
16669828729133339657458312 ~2019
16673369021933346738043912 ~2019
16676993339933353986679912 ~2019
16677232595933354465191912 ~2019
16679235371933358470743912 ~2019
16682256679133364513358312 ~2019
16682720153933365440307912 ~2019
16682831126333365662252712 ~2019
16684419902333368839804712 ~2019
16686407003933372814007912 ~2019
16686890942333373781884712 ~2019
16687759082333375518164712 ~2019
16690233617933380467235912 ~2019
16691422919933382845839912 ~2019
16691832569933383665139912 ~2019
16691950208333383900416712 ~2019
16692810133133385620266312 ~2019
1669720793875303...13311315 2025
16697693755133395387510312 ~2019
16701842042333403684084712 ~2019
16703345939933406691879912 ~2019
16703536928333407073856712 ~2019
Exponent Prime Factor Dig. Year
16704796435133409592870312 ~2019
16705292093933410584187912 ~2019
16707926042333415852084712 ~2019
1670834638012807...91856914 2024
16710600031133421200062312 ~2019
16713283439933426566879912 ~2019
16714442417933428884835912 ~2019
16715522204333431044408712 ~2019
16715596819133431193638312 ~2019
16715849675933431699351912 ~2019
1671775730293076...43733714 2024
16718036489933436072979912 ~2019
16721399222333442798444712 ~2019
16724727584333449455168712 ~2019
16725106291133450212582312 ~2019
1672651459672007...51604114 2024
16727725568333455451136712 ~2019
16727859233933455718467912 ~2019
16729398217133458796434312 ~2019
1672940338073914...91083914 2024
16730440273133460880546312 ~2019
16730686769933461373539912 ~2019
16732092283133464184566312 ~2019
16732097725133464195450312 ~2019
16732680931133465361862312 ~2019
Exponent Prime Factor Dig. Year
16733155873133466311746312 ~2019
16733182697933466365395912 ~2019
16733751458333467502916712 ~2019
16734375785933468751571912 ~2019
16734778040333469556080712 ~2019
16736816081933473632163912 ~2019
16736957738333473915476712 ~2019
16737333001133474666002312 ~2019
16738932443933477864887912 ~2019
1673959194913113...02532714 2024
16739625704333479251408712 ~2019
16739950532333479901064712 ~2019
16740468134333480936268712 ~2019
16740798095933481596191912 ~2019
16741941073133483882146312 ~2019
16742977979933485955959912 ~2019
1674536339333215...71513714 2024
16745610191933491220383912 ~2019
16746241745933492483491912 ~2019
16746454748333492909496712 ~2019
16748056885133496113770312 ~2019
16748206459133496412918312 ~2019
16749147001133498294002312 ~2019
16749284395133498568790312 ~2019
16750552268333501104536712 ~2019
Home
4.724.182 digits
e-mail
25-04-13