Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
16750859492333501718984712 ~2019
16751351911133502703822312 ~2019
16751796683933503593367912 ~2019
1675199166712723...50704715 2024
16754420071133508840142312 ~2019
16754496385133508992770312 ~2019
16754779694333509559388712 ~2019
16755392165933510784331912 ~2019
16757846305133515692610312 ~2019
16758711728333517423456712 ~2019
16759253129933518506259912 ~2019
16760375858333520751716712 ~2019
16761066281933522132563912 ~2019
16762463599133524927198312 ~2019
16763430475133526860950312 ~2019
16766493770333532987540712 ~2019
16769360912333538721824712 ~2019
16771425973133542851946312 ~2019
16771753772333543507544712 ~2019
16772718625133545437250312 ~2019
16776251510333552503020712 ~2019
16777211474333554422948712 ~2019
16777257133133554514266312 ~2019
16777829531933555659063912 ~2019
16780131260333560262520712 ~2019
Exponent Prime Factor Dig. Year
16780451564333560903128712 ~2019
16780526687933561053375912 ~2019
16783706293133567412586312 ~2019
16785550217933571100435912 ~2019
16786563277133573126554312 ~2019
16787528012333575056024712 ~2019
16788799195133577598390312 ~2019
16794060098333588120196712 ~2019
16795115065133590230130312 ~2019
16795389275933590778551912 ~2019
16796159228333592318456712 ~2019
16796460115133592920230312 ~2019
16797767809133595535618312 ~2019
16798796570333597593140712 ~2019
16798890221933597780443912 ~2019
16799055395933598110791912 ~2019
16800149882333600299764712 ~2019
16802174701133604349402312 ~2019
1680391221976318...94607314 2024
16804103149133608206298312 ~2019
16805478067133610956134312 ~2019
16806229616333612459232712 ~2019
16806662221133613324442312 ~2019
16808569303133617138606312 ~2019
16809959498333619918996712 ~2019
Exponent Prime Factor Dig. Year
16810655894333621311788712 ~2019
16812818183933625636367912 ~2019
16814370259133628740518312 ~2019
16814661896333629323792712 ~2019
16816109003933632218007912 ~2019
16816650631133633301262312 ~2019
16817354312333634708624712 ~2019
16818308149133636616298312 ~2019
16819055381933638110763912 ~2019
16819625935133639251870312 ~2019
16819945424333639890848712 ~2019
16820228990333640457980712 ~2019
16823318441933646636883912 ~2019
16826927864333653855728712 ~2019
1682739360798783...63323914 2024
16827779003933655558007912 ~2019
16829565161933659130323912 ~2019
16834298011133668596022312 ~2019
16834528955933669057911912 ~2019
1683473355111515...19599114 2024
16837576121933675152243912 ~2019
1683782659071458...27546315 2025
16839375503933678751007912 ~2019
16840670732333681341464712 ~2019
16842948037133685896074312 ~2019
Exponent Prime Factor Dig. Year
16842991039133685982078312 ~2019
16843184839133686369678312 ~2019
16843779074333687558148712 ~2019
16844185118333688370236712 ~2019
1684477947073941...96143914 2024
16845805142333691610284712 ~2019
16845967160333691934320712 ~2019
1684596997634356...58711915 2023
16846142204333692284408712 ~2019
16847550884333695101768712 ~2019
16848129991133696259982312 ~2019
16848805418333697610836712 ~2019
16849006003133698012006312 ~2019
16849639483133699278966312 ~2019
16850946391133701892782312 ~2019
16852275161933704550323912 ~2019
16852565753933705131507912 ~2019
16854153206333708306412712 ~2019
16854348989933708697979912 ~2019
16855124990333710249980712 ~2019
16857167395133714334790312 ~2019
1685775707873944...56415914 2024
1685777104493068...30171914 2024
16859394953933718789907912 ~2019
16859438930333718877860712 ~2019
Home
4.724.182 digits
e-mail
25-04-13