Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
19298121308338596242616712 ~2019
19298123120338596246240712 ~2019
19300408787938600817575912 ~2019
19300981133938601962267912 ~2019
19301565425938603130851912 ~2019
19302986387938605972775912 ~2019
19304902793938609805587912 ~2019
19305287309938610574619912 ~2019
19305873737938611747475912 ~2019
19306970090338613940180712 ~2019
19308955709938617911419912 ~2019
19312107440338624214880712 ~2019
19312170205138624340410312 ~2019
19313549767138627099534312 ~2019
19314683749138629367498312 ~2019
19314856760338629713520712 ~2019
19315311032338630622064712 ~2019
19321036922338642073844712 ~2019
19321186015138642372030312 ~2019
19321213124338642426248712 ~2019
19321611161938643222323912 ~2019
19325363827138650727654312 ~2019
19326780776338653561552712 ~2019
19328182709938656365419912 ~2019
19328209985938656419971912 ~2019
Exponent Prime Factor Dig. Year
19328291093938656582187912 ~2019
19329113257138658226514312 ~2019
19329389933938658779867912 ~2019
19329814982338659629964712 ~2019
19329893455138659786910312 ~2019
19331447627938662895255912 ~2019
19332064975138664129950312 ~2019
19332408455938664816911912 ~2019
1933437226617076...49392714 2023
19336487923138672975846312 ~2019
19336729940338673459880712 ~2019
19337140661938674281323912 ~2019
19337331668338674663336712 ~2019
19340292677938680585355912 ~2019
19340589017938681178035912 ~2019
19340740819138681481638312 ~2019
19343407814338686815628712 ~2019
1934431339132785...28347314 2024
19345888712338691777424712 ~2019
19346477999938692955999912 ~2019
19347253657138694507314312 ~2019
19349229179938698458359912 ~2019
19351912478338703824956712 ~2019
19355027231938710054463912 ~2019
19355631422338711262844712 ~2019
Exponent Prime Factor Dig. Year
19357489922338714979844712 ~2019
19359771686338719543372712 ~2019
19360170728338720341456712 ~2019
19361433569938722867139912 ~2019
19361788019938723576039912 ~2019
19362357181138724714362312 ~2019
19362400118338724800236712 ~2019
19364319518338728639036712 ~2019
1936523116393718...83468914 2024
19369901672338739803344712 ~2019
19370010761938740021523912 ~2019
19372620950338745241900712 ~2019
19373816204338747632408712 ~2019
19374428911138748857822312 ~2019
19378183927138756367854312 ~2019
19379080349938758160699912 ~2019
19381394198338762788396712 ~2019
19381905980338763811960712 ~2019
19383060793138766121586312 ~2019
19384258277938768516555912 ~2019
19385017357138770034714312 ~2019
19385374706338770749412712 ~2019
1938721028891221...82007115 2023
19387261019938774522039912 ~2019
19387692746338775385492712 ~2019
Exponent Prime Factor Dig. Year
19388667776338777335552712 ~2019
19391241152338782482304712 ~2019
19391422765138782845530312 ~2019
19391565557938783131115912 ~2019
19394975960338789951920712 ~2019
19395072163138790144326312 ~2019
19395404743138790809486312 ~2019
19397520937138795041874312 ~2019
19398115082338796230164712 ~2019
19398893311138797786622312 ~2019
1939955661112327...93332114 2024
19400446397938800892795912 ~2019
19400450483938800900967912 ~2019
19401363577138802727154312 ~2019
19402286081938804572163912 ~2019
19403880703138807761406312 ~2019
19406143451938812286903912 ~2019
19407301201138814602402312 ~2019
1941107506493261...10903314 2024
19411688705938823377411912 ~2019
19412670151138825340302312 ~2019
19417234225138834468450312 ~2019
19418379833938836759667912 ~2019
19419237193138838474386312 ~2019
19420320787138840641574312 ~2019
Home
4.724.182 digits
e-mail
25-04-13