Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
19425152317138850304634312 ~2019
19426251281938852502563912 ~2019
19427342365138854684730312 ~2019
19427390039938854780079912 ~2019
19427837539138855675078312 ~2019
19432347613138864695226312 ~2019
19432930585138865861170312 ~2019
19434430681138868861362312 ~2019
1943583783593770...40164714 2024
19437108842338874217684712 ~2019
19439113337938878226675912 ~2019
19439684753938879369507912 ~2019
19442886505138885773010312 ~2019
19445749855138891499710312 ~2019
19446666080338893332160712 ~2019
19447101836338894203672712 ~2019
19447405637938894811275912 ~2019
19447876847938895753695912 ~2019
19450125835138900251670312 ~2019
19451373409138902746818312 ~2019
19453843613938907687227912 ~2019
19454472023938908944047912 ~2019
19454535767938909071535912 ~2019
19454788526338909577052712 ~2019
19455681290338911362580712 ~2019
Exponent Prime Factor Dig. Year
19460263817938920527635912 ~2019
19460343638338920687276712 ~2019
1946074693739341...29904114 2024
19463041331938926082663912 ~2019
19465927951138931855902312 ~2019
19466129843938932259687912 ~2019
19466659801138933319602312 ~2019
19468174597138936349194312 ~2019
19468371881938936743763912 ~2019
19470674366338941348732712 ~2019
19472282921938944565843912 ~2019
19472401141138944802282312 ~2019
19475091023938950182047912 ~2019
19475636384338951272768712 ~2019
19479185399938958370799912 ~2019
19479826985938959653971912 ~2019
1948049642032805...84523314 2025
19481808482338963616964712 ~2019
19484589545938969179091912 ~2019
19485693377938971386755912 ~2019
19485798193138971596386312 ~2019
19485855745138971711490312 ~2019
19489833443938979666887912 ~2019
19490035369138980070738312 ~2019
19491285115138982570230312 ~2019
Exponent Prime Factor Dig. Year
19494790352338989580704712 ~2019
19495838653138991677306312 ~2019
19496769493138993538986312 ~2019
19499280806338998561612712 ~2019
19499915024338999830048712 ~2019
19500619297139001238594312 ~2019
19502599277939005198555912 ~2019
19506523057139013046114312 ~2019
19507158365939014316731912 ~2019
1950723921912340...06292114 2024
19507521131939015042263912 ~2019
19508591384339017182768712 ~2019
19508682439139017364878312 ~2019
19510762895939021525791912 ~2019
19511637722339023275444712 ~2019
19512345170339024690340712 ~2019
19516561241939033122483912 ~2019
19516718600339033437200712 ~2019
1951870131017612...10939114 2024
19520362160339040724320712 ~2019
19522936637939045873275912 ~2019
19523720941139047441882312 ~2019
19525643198339051286396712 ~2019
19525742804339051485608712 ~2019
19529501882339059003764712 ~2019
Exponent Prime Factor Dig. Year
19530658637939061317275912 ~2019
19531696429139063392858312 ~2019
19534076461139068152922312 ~2019
19534555423139069110846312 ~2019
19535802325139071604650312 ~2019
1953814631599601...96332715 2024
19540650613139081301226312 ~2019
1954219093672696...49264714 2024
19543517609939087035219912 ~2019
19544464513139088929026312 ~2019
19544783299139089566598312 ~2019
19549539217139099078434312 ~2019
19549997834339099995668712 ~2019
19551614131139103228262312 ~2019
19553797754339107595508712 ~2019
19557250045139114500090312 ~2019
19557877685939115755371912 ~2019
19560391406339120782812712 ~2019
19560416051939120832103912 ~2019
19560939392339121878784712 ~2019
1956446259591447...32096714 2024
1956450322395947...80065714 2023
19564536703139129073406312 ~2019
19564734458339129468916712 ~2019
19565930150339131860300712 ~2019
Home
4.724.182 digits
e-mail
25-04-13