Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
19718786095139437572190312 ~2019
19721739835139443479670312 ~2019
19721937716339443875432712 ~2019
19722293933939444587867912 ~2019
19724818505939449637011912 ~2019
1972569742677862...42826315 2024
19727834681939455669363912 ~2019
19731103682339462207364712 ~2019
19731107123939462214247912 ~2019
19732877303939465754607912 ~2019
1973376113571697...57670314 2024
19734017192339468034384712 ~2019
19736608333139473216666312 ~2019
19738473545939476947091912 ~2019
19740861452339481722904712 ~2019
19741092175139482184350312 ~2019
19744207304339488414608712 ~2019
19744632583139489265166312 ~2019
19747135712339494271424712 ~2019
19748172008339496344016712 ~2019
19749244213139498488426312 ~2019
19750978238339501956476712 ~2019
1975307709614108...35988914 2024
19755138379139510276758312 ~2019
1975541812731908...10971915 2024
Exponent Prime Factor Dig. Year
19757286434339514572868712 ~2019
19757372546339514745092712 ~2019
19758148687139516297374312 ~2019
19759554379139519108758312 ~2019
19765209305939530418611912 ~2019
19766359310339532718620712 ~2019
19769675107139539350214312 ~2019
19769858899139539717798312 ~2019
1977078348793163...58064114 2024
19771134818339542269636712 ~2019
19771546537139543093074312 ~2019
19772134135139544268270312 ~2019
19773220999139546441998312 ~2019
19773744053939547488107912 ~2019
19775488568339550977136712 ~2019
1977553554497554...78151914 2025
19777004654339554009308712 ~2019
19779378295139558756590312 ~2019
19781068856339562137712712 ~2019
19784613452339569226904712 ~2019
19786061225939572122451912 ~2019
19786187881139572375762312 ~2019
19786798652339573597304712 ~2019
19791364463939582728927912 ~2019
19792383473939584766947912 ~2019
Exponent Prime Factor Dig. Year
19793532425939587064851912 ~2019
19794562301939589124603912 ~2019
19795386175139590772350312 ~2019
19799987779139599975558312 ~2019
19802386279139604772558312 ~2019
19803118904339606237808712 ~2019
19803920513939607841027912 ~2019
19805262830339610525660712 ~2019
19807079047139614158094312 ~2019
19807782653939615565307912 ~2019
19808914081139617828162312 ~2019
1980976493777448...16575314 2023
19810519303139621038606312 ~2019
19810527769139621055538312 ~2019
1981099859891010...85439115 2024
19811333978339622667956712 ~2019
19815493496339630986992712 ~2019
1981580036831081...01091915 2023
19816630693139633261386312 ~2019
19817545129139635090258312 ~2019
19823069723939646139447912 ~2019
19824482009939648964019912 ~2019
19824997901939649995803912 ~2019
19825389991139650779982312 ~2019
19826694290339653388580712 ~2019
Exponent Prime Factor Dig. Year
19827469561139654939122312 ~2019
19828557785939657115571912 ~2019
19828943629139657887258312 ~2019
19830174715139660349430312 ~2019
19830857585939661715171912 ~2019
19830921341939661842683912 ~2019
19832363330339664726660712 ~2019
19832598416339665196832712 ~2019
19833228731939666457463912 ~2019
19835604371939671208743912 ~2019
1983586568871467...60963914 2024
19836411023939672822047912 ~2019
19837496659139674993318312 ~2019
19838755285139677510570312 ~2019
19839319853939678639707912 ~2019
19839508351139679016702312 ~2019
19841044075139682088150312 ~2019
19842510500339685021000712 ~2019
19842964121939685928243912 ~2019
19843862497139687724994312 ~2019
19844280553139688561106312 ~2019
19844433422339688866844712 ~2019
19845590033939691180067912 ~2019
19847837561939695675123912 ~2019
19848247201139696494402312 ~2019
Home
4.724.182 digits
e-mail
25-04-13