Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11912665052323825330104712 ~2018
11914722433123829444866312 ~2018
11914976827371489860963912 ~2019
11915029376323830058752712 ~2018
11915497747123830995494312 ~2018
11915966334171495798004712 ~2019
11916212725123832425450312 ~2018
11916512005123833024010312 ~2018
11916706484323833412968712 ~2018
11917124378323834248756712 ~2018
11917249340323834498680712 ~2018
11917366931923834733863912 ~2018
11917380683371504284099912 ~2019
11920680133123841360266312 ~2018
11920731961123841463922312 ~2018
11921438678323842877356712 ~2018
11922358835371534153011912 ~2019
11922383863123844767726312 ~2018
11922559868323845119736712 ~2018
11923968025123847936050312 ~2018
11924228527123848457054312 ~2018
11924245579123848491158312 ~2018
11924916257923849832515912 ~2018
11925475945123850951890312 ~2018
11925842336323851684672712 ~2018
Exponent Prime Factor Dig. Year
11926002266323852004532712 ~2018
11926017417771556104506312 ~2019
11926332098323852664196712 ~2018
11927334116323854668232712 ~2018
11928349381123856698762312 ~2018
11928382109923856764219912 ~2018
11928401099923856802199912 ~2018
1192959667331772...56523915 2023
11929695284323859390568712 ~2018
1192976895491123...55515915 2023
11930026729123860053458312 ~2018
11930877563923861755127912 ~2018
11931223739923862447479912 ~2018
11931291327771587747966312 ~2019
11932318789123864637578312 ~2018
11932903855123865807710312 ~2018
11933340770323866681540712 ~2018
11933527586323867055172712 ~2018
11933904383923867808767912 ~2018
11934058261123868116522312 ~2018
11935149055123870298110312 ~2018
11936141096323872282192712 ~2018
11936143309771616859858312 ~2019
11936219174323872438348712 ~2018
11937081905923874163811912 ~2018
Exponent Prime Factor Dig. Year
11937129175123874258350312 ~2018
11937322421923874644843912 ~2018
11938024064323876048128712 ~2018
1193813141472865...39528114 2024
11938211371371629268227912 ~2019
11938390945123876781890312 ~2018
11938569749923877139499912 ~2018
11939361875923878723751912 ~2018
11940246611923880493223912 ~2018
11941096769923882193539912 ~2018
11941289431123882578862312 ~2018
11942897858323885795716712 ~2018
11942941004323885882008712 ~2018
1194357421372460...88022314 2024
11943671486323887342972712 ~2018
11944331681923888663363912 ~2018
11944846009123889692018312 ~2018
11945072821371670436927912 ~2019
11945726588323891453176712 ~2018
11946443450323892886900712 ~2018
11947807117123895614234312 ~2018
11948014319923896028639912 ~2018
11950015016323900030032712 ~2018
11950520786323901041572712 ~2018
11951042834323902085668712 ~2018
Exponent Prime Factor Dig. Year
11951335803771708014822312 ~2019
11952233204323904466408712 ~2018
11953384118323906768236712 ~2018
1195515891892869...40536114 2024
11955225350323910450700712 ~2018
11955860587123911721174312 ~2018
11956270057123912540114312 ~2018
11957012725123914025450312 ~2018
1195751092433372...80652714 2023
11957579630323915159260712 ~2018
11958506033371751036199912 ~2019
11958533918323917067836712 ~2018
1195917513738012...41991114 2023
11959789628323919579256712 ~2018
11959800787123919601574312 ~2018
11960599914171763599484712 ~2019
1196131215972846...94008714 2024
11961621185923923242371912 ~2018
11962183813123924367626312 ~2018
11963426030323926852060712 ~2018
11963770453123927540906312 ~2018
11964025418323928050836712 ~2018
11964216355123928432710312 ~2018
11964422959123928845918312 ~2018
11964979769923929959539912 ~2018
Home
4.828.532 digits
e-mail
25-06-01