Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
20121324013140242648026312 ~2019
20121596395140243192790312 ~2019
20122624307940245248615912 ~2019
20124508196340249016392712 ~2019
20125935473940251870947912 ~2019
20126070800340252141600712 ~2019
20126356837140252713674312 ~2019
20127892393140255784786312 ~2019
20129483993940258967987912 ~2019
20130413327940260826655912 ~2019
20130632672340261265344712 ~2019
20131069961940262139923912 ~2019
20131365373140262730746312 ~2019
2013671158435839...59447114 2023
2013706722011304...58624915 2025
20137120093140274240186312 ~2019
20140626710340281253420712 ~2019
20141444138340282888276712 ~2019
20142316190340284632380712 ~2019
20146514594340293029188712 ~2019
20147822023140295644046312 ~2019
20151050966340302101932712 ~2019
20151146891940302293783912 ~2019
20152399421940304798843912 ~2019
20158050499140316100998312 ~2019
Exponent Prime Factor Dig. Year
20158791223140317582446312 ~2019
20160334573140320669146312 ~2019
20161366724340322733448712 ~2019
20161941980340323883960712 ~2019
20162351621940324703243912 ~2019
20162776051140325552102312 ~2019
20164857602340329715204712 ~2019
20166090278340332180556712 ~2019
20166991598340333983196712 ~2019
20167515638340335031276712 ~2019
2016920933812541...76600714 2024
20169373141140338746282312 ~2019
20172701639940345403279912 ~2019
20177068409940354136819912 ~2019
20181079069140362158138312 ~2019
20181790943940363581887912 ~2019
20182999184340365998368712 ~2019
2018340100091776...88079314 2024
20188585475940377170951912 ~2019
20190396619140380793238312 ~2019
20190869612340381739224712 ~2019
20191029221940382058443912 ~2019
20191378129140382756258312 ~2019
20192274440340384548880712 ~2019
20194386667140388773334312 ~2019
Exponent Prime Factor Dig. Year
20197097957940394195915912 ~2019
20197221953940394443907912 ~2019
20198790536340397581072712 ~2019
20199648410340399296820712 ~2019
20199983095140399966190312 ~2019
20200560551940401121103912 ~2019
20201408042340402816084712 ~2019
20202931226340405862452712 ~2019
20205955469940411910939912 ~2019
20206547815140413095630312 ~2019
20206828505940413657011912 ~2019
20207198390340414396780712 ~2019
20208299480340416598960712 ~2019
20212622947140425245894312 ~2019
20214698939940429397879912 ~2019
20214919439940429838879912 ~2019
20215048147140430096294312 ~2019
20215672499940431344999912 ~2019
20216445581940432891163912 ~2019
20219456989140438913978312 ~2019
20221671805140443343610312 ~2019
20224460845140448921690312 ~2019
20225117804340450235608712 ~2019
20228338787940456677575912 ~2019
20228658409140457316818312 ~2019
Exponent Prime Factor Dig. Year
20229137738340458275476712 ~2019
20229340097940458680195912 ~2019
20233242074340466484148712 ~2019
2023502596911821...37219114 2024
20235286073940470572147912 ~2019
20239839865140479679730312 ~2019
20240129423940480258847912 ~2019
20241801403140483602806312 ~2019
20243455751940486911503912 ~2019
20243523956340487047912712 ~2019
20244191981940488383963912 ~2019
20245110457140490220914312 ~2019
20247253433940494506867912 ~2019
20248133798340496267596712 ~2019
20248438451940496876903912 ~2019
20249299988340498599976712 ~2019
20250568337940501136675912 ~2019
20252215661940504431323912 ~2019
20253782689140507565378312 ~2019
20254020938340508041876712 ~2019
20254517210340509034420712 ~2019
20254574375940509148751912 ~2019
20254722170340509444340712 ~2019
20255281067940510562135912 ~2019
20258143490340516286980712 ~2019
Home
4.724.182 digits
e-mail
25-04-13