Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12095157283124190314566312 ~2018
12095202353924190404707912 ~2018
12095467879124190935758312 ~2018
12095935664324191871328712 ~2018
12095992694324191985388712 ~2018
12096600597772579603586312 ~2019
12097217528324194435056712 ~2018
12098686837124197373674312 ~2018
12099741263924199482527912 ~2018
12099862859924199725719912 ~2018
1210077895573388...07596114 2025
12101017297124202034594312 ~2018
12101017581772606105490312 ~2019
12102022439924204044879912 ~2018
12102071976172612431856712 ~2019
12103386668324206773336712 ~2018
12103531039124207062078312 ~2018
12104933171924209866343912 ~2018
12106324163924212648327912 ~2018
12106679468324213358936712 ~2018
12106756376324213512752712 ~2018
12107280335924214560671912 ~2018
12107586101924215172203912 ~2018
12108277952324216555904712 ~2018
12109963326172659779956712 ~2019
Exponent Prime Factor Dig. Year
12110203483124220406966312 ~2018
12110513723924221027447912 ~2018
12112325329124224650658312 ~2018
12112519213124225038426312 ~2018
12112894717124225789434312 ~2018
12112899110324225798220712 ~2018
12113220488324226440976712 ~2018
12113458027124226916054312 ~2018
12113641277924227282555912 ~2018
12114272388172685634328712 ~2019
12114474860324228949720712 ~2018
12115357051124230714102312 ~2018
12115361084324230722168712 ~2018
12115742820172694456920712 ~2019
12116284639772697707838312 ~2019
12116440137772698640826312 ~2019
12116564253772699385522312 ~2019
12116615597372699693583912 ~2019
12116698248172700189488712 ~2019
12116859794324233719588712 ~2018
12117103520324234207040712 ~2018
12117753629924235507259912 ~2018
1211788601417343...24544714 2024
12118435205924236870411912 ~2018
12119200019924238400039912 ~2018
Exponent Prime Factor Dig. Year
12119611111124239222222312 ~2018
12119867636324239735272712 ~2018
12120033179372720199075912 ~2019
12120883721924241767443912 ~2018
12121038853124242077706312 ~2018
1212171251112327...02131314 2024
12122894366324245788732712 ~2018
12122910113924245820227912 ~2018
12123359705924246719411912 ~2018
12125121950324250243900712 ~2018
12126197057924252394115912 ~2018
12128475017924256950035912 ~2018
12130168179772781009078312 ~2019
12130438369124260876738312 ~2018
12130544401772783266410312 ~2019
12131062757924262125515912 ~2018
12131510273924263020547912 ~2018
1213154003176987...58259314 2024
12131598938324263197876712 ~2018
12131825551124263651102312 ~2018
12132206501924264413003912 ~2018
12132210425924264420851912 ~2018
12132747834172796487004712 ~2019
12134334121124268668242312 ~2018
12134768642324269537284712 ~2018
Exponent Prime Factor Dig. Year
1213540836372038...05101714 2024
12135867767924271735535912 ~2018
12139040095124278080190312 ~2018
12140138821124280277642312 ~2018
12140246217772841477306312 ~2019
12141100175924282200351912 ~2018
12141789913124283579826312 ~2018
12143794249124287588498312 ~2018
12144672113924289344227912 ~2018
12144974611124289949222312 ~2018
12145791391124291582782312 ~2018
1214693170616292...23759914 2024
12146996956172881981736712 ~2019
12147842041772887052250312 ~2019
12148261163924296522327912 ~2018
12148771034324297542068712 ~2018
12149216077124298432154312 ~2018
12151643131372909858787912 ~2019
1215230398439843...27283114 2023
12152349113924304698227912 ~2018
12152385302324304770604712 ~2018
12154543341772927260050312 ~2019
12156386569124312773138312 ~2018
12157231781924314463563912 ~2018
12158434357124316868714312 ~2018
Home
4.828.532 digits
e-mail
25-06-01