Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
20548294225141096588450312 ~2019
20550042307141100084614312 ~2019
20551323469141102646938312 ~2019
20551561381141103122762312 ~2019
20551648496341103296992712 ~2019
20553762895141107525790312 ~2019
20556182588341112365176712 ~2019
20556588457141113176914312 ~2019
20556598453141113196906312 ~2019
20556994891141113989782312 ~2019
20558120791141116241582312 ~2019
20558951198341117902396712 ~2019
20559228497941118456995912 ~2019
20561748739141123497478312 ~2019
20563266872341126533744712 ~2019
20564835215941129670431912 ~2019
20566559557141133119114312 ~2019
20566705453141133410906312 ~2019
20567995615141135991230312 ~2019
20568554881141137109762312 ~2019
2056990504933414...38183914 2023
20571038039941142076079912 ~2019
20572075646341144151292712 ~2019
2057563217091646...73672114 2024
20577098126341154196252712 ~2019
Exponent Prime Factor Dig. Year
20578366361941156732723912 ~2019
20578494695941156989391912 ~2019
20578853771941157707543912 ~2019
20579587940341159175880712 ~2019
20580331733941160663467912 ~2019
20581393393141162786786312 ~2019
20581791313141163582626312 ~2019
20582092505941164185011912 ~2019
20582975759941165951519912 ~2019
20583456625141166913250312 ~2019
20586284821141172569642312 ~2019
20586468785941172937571912 ~2019
20586498469141172996938312 ~2019
20587639802341175279604712 ~2019
20587855838341175711676712 ~2019
20588218331941176436663912 ~2019
20589366332341178732664712 ~2019
20591277527941182555055912 ~2019
20592653378341185306756712 ~2019
20595158588341190317176712 ~2019
20596852829941193705659912 ~2019
20597427422341194854844712 ~2019
20597665831141195331662312 ~2019
20597732270341195464540712 ~2019
20598566396341197132792712 ~2019
Exponent Prime Factor Dig. Year
20601519133141203038266312 ~2019
20601952610341203905220712 ~2019
20602992011941205984023912 ~2019
20603641994341207283988712 ~2019
20604688772341209377544712 ~2019
20604695993941209391987912 ~2019
20608875722341217751444712 ~2019
20608928411941217856823912 ~2019
20609015492341218030984712 ~2019
20609156435941218312871912 ~2019
2061187854431009...86707115 2025
2061321272638781...21403914 2023
20613489062341226978124712 ~2019
20615897780341231795560712 ~2019
2061953431872350...12331914 2024
20619799670341239599340712 ~2019
20627881721941255763443912 ~2019
20628703561141257407122312 ~2019
20629908565141259817130312 ~2019
20631454375141262908750312 ~2019
20633488961941266977923912 ~2019
2063408641879615...71114314 2023
20634238741141268477482312 ~2019
20634384223141268768446312 ~2019
20635339721941270679443912 ~2019
Exponent Prime Factor Dig. Year
20636843426341273686852712 ~2019
20639441971141278883942312 ~2019
20640450428341280900856712 ~2019
20641182499141282364998312 ~2019
20643371303941286742607912 ~2019
20647692605941295385211912 ~2019
20647983911941295967823912 ~2019
20648837545141297675090312 ~2019
20652996962341305993924712 ~2019
2065895385792355...39800714 2024
20659476851941318953703912 ~2019
2065952566873677...69028714 2024
20659596199141319192398312 ~2019
20659603705141319207410312 ~2019
20660160140341320320280712 ~2019
20660705773141321411546312 ~2019
20661347491141322694982312 ~2019
20662831819141325663638312 ~2019
2066525271496902...06776714 2024
20665357175941330714351912 ~2019
20666322902341332645804712 ~2019
20668090057141336180114312 ~2019
20669714966341339429932712 ~2019
20671683167941343366335912 ~2019
2067343318213969...70963314 2023
Home
4.724.182 digits
e-mail
25-04-13