Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
20406867260340813734520712 ~2019
20407124627940814249255912 ~2019
20407201778340814403556712 ~2019
20409085075140818170150312 ~2019
20410286276340820572552712 ~2019
20410935749940821871499912 ~2019
20411189435940822378871912 ~2019
20422190888340844381776712 ~2019
20424222203940848444407912 ~2019
20425534519140851069038312 ~2019
20425639943940851279887912 ~2019
20426146103940852292207912 ~2019
20426351203140852702406312 ~2019
20427683396340855366792712 ~2019
20428469467140856938934312 ~2019
20431167575940862335151912 ~2019
20435300465940870600931912 ~2019
2043622783192820...40802314 2024
20438778865140877557730312 ~2019
20439018077940878036155912 ~2019
20440147667940880295335912 ~2019
20440861699140881723398312 ~2019
20443392515940886785031912 ~2019
20445726481140891452962312 ~2019
20448339896340896679792712 ~2019
Exponent Prime Factor Dig. Year
20449015817940898031635912 ~2019
20449555147140899110294312 ~2019
20456247866340912495732712 ~2019
20456316710340912633420712 ~2019
20456344189140912688378312 ~2019
20457579595140915159190312 ~2019
20458869824340917739648712 ~2019
20461637209140923274418312 ~2019
20462461421940924922843912 ~2019
20463605401140927210802312 ~2019
20464836470340929672940712 ~2019
20471868263940943736527912 ~2019
20472812096340945624192712 ~2019
20475425108340950850216712 ~2019
20475861521940951723043912 ~2019
20476926145140953852290312 ~2019
20480443643940960887287912 ~2019
2048412281293072...21935114 2024
20484720302340969440604712 ~2019
20485393463940970786927912 ~2019
20485861543140971723086312 ~2019
20485929853140971859706312 ~2019
20485969268340971938536712 ~2019
20486334769140972669538312 ~2019
20488142537940976285075912 ~2019
Exponent Prime Factor Dig. Year
20488548440340977096880712 ~2019
20489998969140979997938312 ~2019
20490934211940981868423912 ~2019
20491212596340982425192712 ~2019
20495958080340991916160712 ~2019
20496443333940992886667912 ~2019
20496964171140993928342312 ~2019
20497457282340994914564712 ~2019
20497934753940995869507912 ~2019
20498147881140996295762312 ~2019
20499033121140998066242312 ~2019
20500000697941000001395912 ~2019
2050493986131291...12619115 2023
20506089365941012178731912 ~2019
2050665530573568...23191914 2024
20506961657941013923315912 ~2019
20507249828341014499656712 ~2019
20509713950341019427900712 ~2019
20510787361141021574722312 ~2019
20511866845141023733690312 ~2019
20515052167141030104334312 ~2019
20515925641141031851282312 ~2019
20518872961141037745922312 ~2019
20520014363941040028727912 ~2019
20520326480341040652960712 ~2019
Exponent Prime Factor Dig. Year
20521993843141043987686312 ~2019
20524212269941048424539912 ~2019
20526946027141053892054312 ~2019
20527216555141054433110312 ~2019
20527555631941055111263912 ~2019
20528623733941057247467912 ~2019
20529026657941058053315912 ~2019
20531461469941062922939912 ~2019
20533199755141066399510312 ~2019
2053404042675133...06675114 2024
20535398312341070796624712 ~2019
20535507218341071014436712 ~2019
20536167236341072334472712 ~2019
20537042510341074085020712 ~2019
20537227769941074455539912 ~2019
20537305664341074611328712 ~2019
2053848099371807...27445714 2024
20539972988341079945976712 ~2019
2054114203512464...44212114 2024
2054124207616737...00960914 2024
20541505976341083011952712 ~2019
20542882633141085765266312 ~2019
20543211361141086422722312 ~2019
20545990964341091981928712 ~2019
20546637134341093274268712 ~2019
Home
4.724.182 digits
e-mail
25-04-13