Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7721185381115442370762312 ~2016
7721335433346328012599912 ~2017
7721563145915443126291912 ~2016
7721905351115443810702312 ~2016
7722247853346333487119912 ~2017
7722323576315444647152712 ~2016
7722501385115445002770312 ~2016
7723375865915446751731912 ~2016
7723749305915447498611912 ~2016
7724112068961792896551312 ~2018
7724431153115448862306312 ~2016
7724448050315448896100712 ~2016
7724647376315449294752712 ~2016
7724947931915449895863912 ~2016
7725452407115450904814312 ~2016
7725531040146353186240712 ~2017
7725814532315451629064712 ~2016
7726594128146359564768712 ~2017
7726757606315453515212712 ~2016
7727077303115454154606312 ~2016
7727398289915454796579912 ~2016
7727729035115455458070312 ~2016
7728683507915457367015912 ~2016
7729027381115458054762312 ~2016
7729081219115458162438312 ~2016
Exponent Prime Factor Dig. Year
7729454941115458909882312 ~2016
7729962992315459925984712 ~2016
7730186459915460372919912 ~2016
7730731664315461463328712 ~2016
7731035264315462070528712 ~2016
7731503966315463007932712 ~2016
773258121077376...75007914 2025
7733104880315466209760712 ~2016
7733214625161865717000912 ~2018
7733313665915466627331912 ~2016
7733360876315466721752712 ~2016
7733441924961867535399312 ~2018
7733671832315467343664712 ~2016
7733860472315467720944712 ~2016
7734182891915468365783912 ~2016
7734308245746405849474312 ~2017
7734755738315469511476712 ~2016
7735190060315470380120712 ~2016
7735266103346411596619912 ~2017
7735391681915470783363912 ~2016
7736132819961889062559312 ~2018
7736769218315473538436712 ~2016
773731015516205...44390314 2023
7737361531115474723062312 ~2016
7737544105115475088210312 ~2016
Exponent Prime Factor Dig. Year
7737830275115475660550312 ~2016
7738264892315476529784712 ~2016
7738499467115476998934312 ~2016
7739972648315479945296712 ~2016
7740472025915480944051912 ~2016
7740630725915481261451912 ~2016
7740734345915481468691912 ~2016
7741094317115482188634312 ~2016
7741118161346446708967912 ~2017
7741749019115483498038312 ~2016
7742051423915484102847912 ~2016
7742997043761943976349712 ~2018
7743066715761944533725712 ~2018
7744550281161956402248912 ~2018
7744927861115489855722312 ~2016
7745340395346472042371912 ~2017
7746034436961968275495312 ~2018
7746373884146478243304712 ~2017
7747542631346485255787912 ~2017
7747759153746486554922312 ~2017
7747816030161982528240912 ~2018
7748025727115496051454312 ~2016
7749438272315498876544712 ~2016
7749572588315499145176712 ~2016
7750115001746500690010312 ~2017
Exponent Prime Factor Dig. Year
7750640252962005122023312 ~2018
7750645922962005167383312 ~2018
7751811181346510867087912 ~2017
7752146077115504292154312 ~2016
7753320788315506641576712 ~2016
7753617893915507235787912 ~2016
7753889071115507778142312 ~2016
7753951337915507902675912 ~2016
7754256743915508513487912 ~2016
775459183913923...70584714 2023
7754623855115509247710312 ~2016
7754646335915509292671912 ~2016
7754719457915509438915912 ~2016
7754819554146528917324712 ~2017
7755541633115511083266312 ~2016
7755554549915511109099912 ~2016
7755637640962045101127312 ~2018
7755965612315511931224712 ~2016
7756140035915512280071912 ~2016
7756198045346537188271912 ~2017
7756351010962050808087312 ~2018
7756804951115513609902312 ~2016
7756949783962055598271312 ~2018
7758311816315516623632712 ~2016
7758531809915517063619912 ~2016
Home
4.933.056 digits
e-mail
25-07-20