Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12210498803924420997607912 ~2018
12210699806324421399612712 ~2018
12211745209124423490418312 ~2018
12211925795924423851591912 ~2018
12212390944173274345664712 ~2019
12213290771924426581543912 ~2018
12213562133924427124267912 ~2018
12213892915373283357491912 ~2019
12214047176324428094352712 ~2018
12214482151124428964302312 ~2018
12214686877124429373754312 ~2018
12217768025924435536051912 ~2018
12219304970324438609940712 ~2018
12219586100324439172200712 ~2018
12219754673924439509347912 ~2018
12219870031124439740062312 ~2018
12222132947924444265895912 ~2018
12222722273924445444547912 ~2018
12224613980324449227960712 ~2018
12224886893924449773787912 ~2018
12225602604173353615624712 ~2019
12229041830324458083660712 ~2018
1222969729994304...49564914 2024
12230539633124461079266312 ~2018
12231815009924463630019912 ~2018
Exponent Prime Factor Dig. Year
12232046449373392278695912 ~2019
12233082191924466164383912 ~2018
12233601467924467202935912 ~2018
12233696035124467392070312 ~2018
12233714779124467429558312 ~2018
12233894054324467788108712 ~2018
12234759932324469519864712 ~2018
1223716591971292...11203315 2025
12237347228324474694456712 ~2018
12237453271373424719627912 ~2019
1223798280311590...64403114 2024
12238223684324476447368712 ~2018
12238402201124476804402312 ~2018
12239510096324479020192712 ~2018
12240568075124481136150312 ~2018
12241116662324482233324712 ~2018
12241381123124482762246312 ~2018
12242388797924484777595912 ~2018
12242547308324485094616712 ~2018
12242589593924485179187912 ~2018
12242744813373456468879912 ~2019
12243162893924486325787912 ~2018
12244036794173464220764712 ~2019
12244793434173468760604712 ~2019
12245879617773475277706312 ~2019
Exponent Prime Factor Dig. Year
12247175750324494351500712 ~2018
12247360900173484165400712 ~2019
12247417799924494835599912 ~2018
12248776957124497553914312 ~2018
12249830689124499661378312 ~2018
12250257055773501542334312 ~2019
12250586132324501172264712 ~2018
12250647680324501295360712 ~2018
12250929455924501858911912 ~2018
12251042330324502084660712 ~2018
12251295680324502591360712 ~2018
12252585947924505171895912 ~2018
12252816731924505633463912 ~2018
12253294103924506588207912 ~2018
12255476059124510952118312 ~2018
12255482846324510965692712 ~2018
12255656138324511312276712 ~2018
1225663224235515...09035114 2024
12256687474173540124844712 ~2019
12257611340324515222680712 ~2018
12257733613773546401682312 ~2019
12258112310324516224620712 ~2018
12258221429924516442859912 ~2018
12258224429924516448859912 ~2018
12258638663373551831979912 ~2019
Exponent Prime Factor Dig. Year
12259032986324518065972712 ~2018
12259510241924519020483912 ~2018
1226079764818705...30151114 2023
12261127549124522255098312 ~2018
12261447098324522894196712 ~2018
12261532901924523065803912 ~2018
12261617935124523235870312 ~2018
1226176427832280...55763914 2025
12262091252324524182504712 ~2018
12263566615124527133230312 ~2018
12263923913924527847827912 ~2018
12263953525124527907050312 ~2018
12264355103924528710207912 ~2018
12265060160324530120320712 ~2018
12265753099124531506198312 ~2018
12266644616324533289232712 ~2018
12266961428324533922856712 ~2018
12268979101124537958202312 ~2018
12269342399924538684799912 ~2018
12269738821124539477642312 ~2018
12270369035924540738071912 ~2018
12270604002173623624012712 ~2019
12274034129924548068259912 ~2018
12274332821924548665643912 ~2018
12276052723124552105446312 ~2018
Home
4.828.532 digits
e-mail
25-06-01