Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7758798473915517596947912 ~2016
7758895837115517791674312 ~2016
7759079497746554476986312 ~2017
7759507709915519015419912 ~2016
7759610189915519220379912 ~2016
7760053771115520107542312 ~2016
7760297809115520595618312 ~2016
7760798947746564793686312 ~2017
7761655616315523311232712 ~2016
7761746712146570480272712 ~2017
7762194953915524389907912 ~2016
7762242323915524484647912 ~2016
776232528432872...55191114 2023
7762697101115525394202312 ~2016
7762938569915525877139912 ~2016
7762950800315525901600712 ~2016
7763159360315526318720712 ~2016
7763512495115527024990312 ~2016
7763706823115527413646312 ~2016
7763725554146582353324712 ~2017
7763811373346582868239912 ~2017
7763835320315527670640712 ~2016
7765422830315530845660712 ~2016
7766052029915532104059912 ~2016
7766278415915532556831912 ~2016
Exponent Prime Factor Dig. Year
7766964600146601787600712 ~2017
7767166034315534332068712 ~2016
7767239411915534478823912 ~2016
7768284386315536568772712 ~2016
7768535713115537071426312 ~2016
7769539121915539078243912 ~2016
7769986939162159895512912 ~2018
7770365077162162920616912 ~2018
7770593201915541186403912 ~2016
7771127389115542254778312 ~2016
7771168331915542336663912 ~2016
7771522568315543045136712 ~2016
7771560145115543120290312 ~2016
7771843577915543687155912 ~2016
7771858709915543717419912 ~2016
7771859809162174878472912 ~2018
7772675461346636052767912 ~2017
7773030416315546060832712 ~2016
7773650195915547300391912 ~2016
7773774811162190198488912 ~2018
7774389871162195118968912 ~2018
7774785231746648711390312 ~2017
7774938013162199504104912 ~2018
7774995563915549991127912 ~2016
7775282827115550565654312 ~2016
Exponent Prime Factor Dig. Year
7775446928315550893856712 ~2016
7775545483115551090966312 ~2016
7777108039115554216078312 ~2016
7777205194377772051943112 ~2018
7777542078777775420787112 ~2018
777754445599970...92463914 2024
7777856900315555713800712 ~2016
7778336477346670018863912 ~2017
7778392831115556785662312 ~2016
7778580248315557160496712 ~2016
7779075062315558150124712 ~2016
7779523865915559047731912 ~2016
7779713333915559426667912 ~2016
7779842192315559684384712 ~2016
7779971894962239775159312 ~2018
7780325951915560651903912 ~2016
7780612543115561225086312 ~2016
7781229421346687376527912 ~2017
7782033713915564067427912 ~2016
7782301325915564602651912 ~2016
7782590768315565181536712 ~2016
7783038482315566076964712 ~2016
7784009875115568019750312 ~2016
7784374286315568748572712 ~2016
7784402321915568804643912 ~2016
Exponent Prime Factor Dig. Year
7785826117115571652234312 ~2016
7785832001915571664003912 ~2016
778611114231868...74152114 2024
7786639190315573278380712 ~2016
7786894351115573788702312 ~2016
7788083606315576167212712 ~2016
7789189163915578378327912 ~2016
7789348993115578697986312 ~2016
7789410881915578821763912 ~2016
7789582991915579165983912 ~2016
7789820243915579640487912 ~2016
7790024637746740147826312 ~2017
7790126281115580252562312 ~2016
7790469314315580938628712 ~2016
7790513705915581027411912 ~2016
7790640187115581280374312 ~2016
7791557065115583114130312 ~2016
7791632395115583264790312 ~2016
7791961976315583923952712 ~2016
7792232960315584465920712 ~2016
7792286861915584573723912 ~2016
7792635406146755812436712 ~2017
7793414557115586829114312 ~2016
7793736335915587472671912 ~2016
7793793299346762759795912 ~2017
Home
4.933.056 digits
e-mail
25-07-20