Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12276716137124553432274312 ~2018
12277739792324555479584712 ~2018
12278016647924556033295912 ~2018
12279360673124558721346312 ~2018
12279531643124559063286312 ~2018
12281160242324562320484712 ~2018
12282536465924565072931912 ~2018
12282876961124565753922312 ~2018
12283626276173701757656712 ~2019
12283659977924567319955912 ~2018
12283927976324567855952712 ~2018
12284770399773708622398312 ~2019
12285497687924570995375912 ~2018
12287098115373722588691912 ~2019
12288332293124576664586312 ~2018
1228934716393834...15136914 2024
1228934874711808...55731315 2023
12290326262324580652524712 ~2018
12291285811124582571622312 ~2018
12294324931124588649862312 ~2018
12294347437124588694874312 ~2018
12294516398324589032796712 ~2018
12295157699924590315399912 ~2018
12296459942324592919884712 ~2018
12296875303124593750606312 ~2018
Exponent Prime Factor Dig. Year
12296946380324593892760712 ~2018
12297204188324594408376712 ~2018
12298213501124596427002312 ~2018
12298569443924597138887912 ~2018
12298586060324597172120712 ~2018
12298790060324597580120712 ~2018
12298810262324597620524712 ~2018
12299420449773796522698312 ~2019
12300332179773801993078312 ~2019
12301283771924602567543912 ~2018
12303777059924607554119912 ~2018
12304070729924608141459912 ~2018
12304229034173825374204712 ~2019
12304913567373829481403912 ~2019
12305882045924611764091912 ~2018
12306101395124612202790312 ~2018
12307670593124615341186312 ~2018
12307673228324615346456712 ~2018
12310458584324620917168712 ~2018
12310463693924620927387912 ~2018
12310512152324621024304712 ~2018
12312493795124624987590312 ~2018
12314000798324628001596712 ~2018
12314393933924628787867912 ~2018
12315067121924630134243912 ~2018
Exponent Prime Factor Dig. Year
12315089783924630179567912 ~2018
12317335808324634671616712 ~2018
12318166663124636333326312 ~2018
12319119415124638238830312 ~2018
12319419080324638838160712 ~2018
12321060829124642121658312 ~2018
12322435190324644870380712 ~2018
12323896865924647793731912 ~2018
12324934808324649869616712 ~2018
12325820462324651640924712 ~2018
12326138723924652277447912 ~2018
12326977748324653955496712 ~2018
12327516224324655032448712 ~2018
12327760700324655521400712 ~2018
12327780179924655560359912 ~2018
12329208320324658416640712 ~2018
12330430477124660860954312 ~2018
12331665890324663331780712 ~2018
1233185109298287...34428914 2023
12331868321924663736643912 ~2018
12332500856324665001712712 ~2018
12332598038324665196076712 ~2018
12332741861924665483723912 ~2018
12332790032324665580064712 ~2018
12333283015124666566030312 ~2018
Exponent Prime Factor Dig. Year
12334598546324669197092712 ~2018
12336296279924672592559912 ~2018
12337164446324674328892712 ~2018
12337632013124675264026312 ~2018
12337658850174025953100712 ~2019
12338923421924677846843912 ~2018
12339455150324678910300712 ~2018
12339759671924679519343912 ~2018
12340086095924680172191912 ~2018
12340623353924681246707912 ~2018
12340799827124681599654312 ~2018
12342781745924685563491912 ~2018
12343421809124686843618312 ~2018
12343689769124687379538312 ~2018
12343738424324687476848712 ~2018
12344756323124689512646312 ~2018
12346207981774077247890312 ~2019
12348042361124696084722312 ~2018
12348165235124696330470312 ~2018
12348368237924696736475912 ~2018
12348900481124697800962312 ~2018
12349458937124698917874312 ~2018
12349652948324699305896712 ~2018
12350558965374103353791912 ~2019
12351494755124702989510312 ~2018
Home
4.828.532 digits
e-mail
25-06-01