Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12575960125775455760754312 ~2019
12575992407775455954446312 ~2019
12576325679925152651359912 ~2018
12576676489125153352978312 ~2018
12576803671125153607342312 ~2018
12577083584325154167168712 ~2018
12577326427125154652854312 ~2018
12578530579125157061158312 ~2018
12579152797125158305594312 ~2018
12579903049125159806098312 ~2018
12580738826325161477652712 ~2018
12581277643125162555286312 ~2018
12581818887775490913326312 ~2019
12582162475125164324950312 ~2018
12584309557125168619114312 ~2018
12584668598325169337196712 ~2018
12584827628325169655256712 ~2018
1258587281892617...46331314 2024
12588168188325176336376712 ~2018
12588540377925177080755912 ~2018
12588723287925177446575912 ~2018
12589253353125178506706312 ~2018
12590016254325180032508712 ~2018
12590190487125180380974312 ~2018
12590923583925181847167912 ~2018
Exponent Prime Factor Dig. Year
12592432352325184864704712 ~2018
12593516988175561101928712 ~2019
12593746801125187493602312 ~2018
12594241633125188483266312 ~2018
12594437957925188875915912 ~2018
12596538362325193076724712 ~2018
12597129809375582778855912 ~2019
12597306439125194612878312 ~2018
12597964121925195928243912 ~2018
12598074083925196148167912 ~2018
12598084327375588505963912 ~2019
12598396889925196793779912 ~2018
12599426383125198852766312 ~2018
12599490284325198980568712 ~2018
12600889232325201778464712 ~2018
12601471367925202942735912 ~2018
1260220079331890...18995114 2024
12602903503125205807006312 ~2018
12603193631925206387263912 ~2018
12605895583125211791166312 ~2018
12607365734325214731468712 ~2018
12607716818325215433636712 ~2018
12607872167925215744335912 ~2018
12608026963125216053926312 ~2018
12611381713375668290279912 ~2019
Exponent Prime Factor Dig. Year
12611925644325223851288712 ~2018
12612425003925224850007912 ~2018
1261413428395777...02026314 2024
12614995753775689974522312 ~2019
12615239445775691436674312 ~2019
12617334830325234669660712 ~2018
1261765728975148...74197714 2023
12620531576325241063152712 ~2018
12620852147925241704295912 ~2018
1262188033076386...47334314 2023
12622065769125244131538312 ~2018
12623276819925246553639912 ~2018
12623779405125247558810312 ~2018
12623871079125247742158312 ~2018
12624218903925248437807912 ~2018
12625016174325250032348712 ~2018
12625261319925250522639912 ~2018
12625430402325250860804712 ~2018
12626718791925253437583912 ~2018
12627094392175762566352712 ~2019
12627121231125254242462312 ~2018
12627377975925254755951912 ~2018
12627670694325255341388712 ~2018
12628623007125257246014312 ~2018
12629363705925258727411912 ~2018
Exponent Prime Factor Dig. Year
12630112087125260224174312 ~2018
12630427532325260855064712 ~2018
12630478619375782871715912 ~2019
12630800399925261600799912 ~2018
12631416326325262832652712 ~2018
12631549878175789299268712 ~2019
12632525059125265050118312 ~2018
12633381131925266762263912 ~2018
12633850721925267701443912 ~2018
12634190941125268381882312 ~2018
12634191845925268383691912 ~2018
12634328581125268657162312 ~2018
12634376609925268753219912 ~2018
12635468167125270936334312 ~2018
12635861683125271723366312 ~2018
12636010897125272021794312 ~2018
12636407633925272815267912 ~2018
12636440888325272881776712 ~2018
1263681997071819...75780914 2024
1263783616737658...17383914 2025
12638695789125277391578312 ~2018
12639310883925278621767912 ~2018
12639450163125278900326312 ~2018
12641125181925282250363912 ~2018
12641163545925282327091912 ~2018
Home
4.828.532 digits
e-mail
25-06-01