Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
8485206164316970412328712 ~2016
8485489597116970979194312 ~2016
8485878412150915270472712 ~2018
8486659046316973318092712 ~2016
8487197772150923186632712 ~2018
8487260420316974520840712 ~2016
8487401813916974803627912 ~2016
8487402097116974804194312 ~2016
8487747649167901981192912 ~2018
8488738574316977477148712 ~2016
8488878655116977757310312 ~2016
8488994423916977988847912 ~2016
8489349874150936099244712 ~2018
8490227609916980455219912 ~2016
8490231059916980462119912 ~2016
8490249055750941494334312 ~2018
8490659857116981319714312 ~2016
8490771210150944627260712 ~2018
8490878089767927024717712 ~2018
8491858009116983716018312 ~2016
849195065411044...04543115 2025
8492378555916984757111912 ~2016
8493273150150959638900712 ~2018
8493432059916986864119912 ~2016
8493551984316987103968712 ~2016
Exponent Prime Factor Dig. Year
8493586718967948693751312 ~2018
8493592771767948742173712 ~2018
8493792517350962755103912 ~2018
8494399243116988798486312 ~2016
8494790051916989580103912 ~2016
8494851371916989702743912 ~2016
849567012793211...08346314 2023
8496045209916992090419912 ~2016
8497814006316995628012712 ~2016
8498047649916996095299912 ~2016
8499293629750995761778312 ~2018
8499717763350998306579912 ~2018
8500901573917001803147912 ~2016
850094807095100...42540114 2023
8501023889917002047779912 ~2016
8501147168317002294336712 ~2016
8501439998968011519991312 ~2018
8501543606317003087212712 ~2016
8501645561917003291123912 ~2016
8501824126768014593013712 ~2018
8501844203917003688407912 ~2016
8502794318317005588636712 ~2016
8503139948317006279896712 ~2016
8503484785117006969570312 ~2016
8503976777351023860663912 ~2018
Exponent Prime Factor Dig. Year
8504055388768032443109712 ~2018
8504059613917008119227912 ~2016
8504116145917008232291912 ~2016
8504385619351026313715912 ~2018
8504766209917009532419912 ~2016
8505442166317010884332712 ~2016
8505623839117011247678312 ~2016
8505632426317011264852712 ~2016
8505820460317011640920712 ~2016
8506354009168050832072912 ~2018
8507815898317015631796712 ~2016
8509644320317019288640712 ~2016
8509768589917019537179912 ~2016
8509953115117019906230312 ~2016
8510316914317020633828712 ~2016
8510384215117020768430312 ~2016
8510558113117021116226312 ~2016
8510700631117021401262312 ~2016
8511393967117022787934312 ~2016
8512198309117024396618312 ~2016
8513032316317026064632712 ~2016
8513377052317026754104712 ~2016
8513521430317027042860712 ~2016
8513913101917027826203912 ~2016
8514006605917028013211912 ~2016
Exponent Prime Factor Dig. Year
8515340743117030681486312 ~2016
8516918971351101513827912 ~2018
8517938521117035877042312 ~2016
8518359994768146879957712 ~2018
8518887569917037775139912 ~2016
8520022057117040044114312 ~2016
8520144269917040288539912 ~2016
8520859409917041718819912 ~2016
8521695530317043391060712 ~2016
8521759931917043519863912 ~2016
8521871555351131229331912 ~2018
8521875473917043750947912 ~2016
8522586824317045173648712 ~2016
8522650609117045301218312 ~2016
8523109543117046219086312 ~2016
8523377606317046755212712 ~2016
8524383824317048767648712 ~2016
8525515310317051030620712 ~2016
8526144986317052289972712 ~2016
8527754759917055509519912 ~2016
8529976226317059952452712 ~2016
8530290097117060580194312 ~2016
8531029613917062059227912 ~2016
8533335623351200013739912 ~2018
8534658509917069317019912 ~2016
Home
4.933.056 digits
e-mail
25-07-20