Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
13355709209926711418419912 ~2018
13356284123380137704739912 ~2019
13356767189926713534379912 ~2018
13356854979780141129878312 ~2019
13357508947780145053686312 ~2019
13358078021926716156043912 ~2018
13358302676326716605352712 ~2018
13359429023926718858047912 ~2018
13360056955126720113910312 ~2018
13360193223780161159342312 ~2019
13360377094180162262564712 ~2019
13360531376326721062752712 ~2018
13360916387926721832775912 ~2018
13362036625126724073250312 ~2018
13363235731126726471462312 ~2018
13363543595926727087191912 ~2018
13363805531926727611063912 ~2018
13363954292326727908584712 ~2018
13364191693126728383386312 ~2018
13365154265926730308531912 ~2018
1336541778971577...99184714 2024
13365630296326731260592712 ~2018
13365658620180193951720712 ~2019
13366024919926732049839912 ~2018
13368588504180211531024712 ~2019
Exponent Prime Factor Dig. Year
13370096947126740193894312 ~2018
13370477713126740955426312 ~2018
13370535965926741071931912 ~2018
1337132375091099...23239915 2025
13371453649126742907298312 ~2018
13372112492326744224984712 ~2018
13372121969926744243939912 ~2018
13372846097926745692195912 ~2018
13373182513126746365026312 ~2018
13373313241126746626482312 ~2018
13373774941380242649647912 ~2019
13373948923126747897846312 ~2018
13375472719126750945438312 ~2018
13375954711126751909422312 ~2018
13376521124326753042248712 ~2018
1337659901032153...06583115 2025
13377575645926755151291912 ~2018
13377940003126755880006312 ~2018
13378436651926756873303912 ~2018
13378947665926757895331912 ~2018
13379516195926759032391912 ~2018
13380827120326761654240712 ~2018
13383707413126767414826312 ~2018
13384569349126769138698312 ~2018
1338477603113212...47464114 2024
Exponent Prime Factor Dig. Year
13385018793780310112762312 ~2019
13385972375926771944751912 ~2018
13386553496326773106992712 ~2018
13386644053126773288106312 ~2018
13387670522326775341044712 ~2018
13388134381126776268762312 ~2018
13389520117126779040234312 ~2018
13389778507126779557014312 ~2018
13389913764180339482584712 ~2019
13390110833926780221667912 ~2018
13390117595926780235191912 ~2018
13390889501926781779003912 ~2018
13391571215926783142431912 ~2018
13394690147926789380295912 ~2018
13394842276180369053656712 ~2019
1339522239832277...07711114 2025
13395405289126790810578312 ~2018
13395696000180374176000712 ~2019
1339603794792572...85996914 2024
13396551968326793103936712 ~2018
13397261581126794523162312 ~2018
13397579519926795159039912 ~2018
13398047669926796095339912 ~2018
13399741769926799483539912 ~2018
13400797597126801595194312 ~2018
Exponent Prime Factor Dig. Year
13401972629926803945259912 ~2018
13402020326326804040652712 ~2018
13402220816326804441632712 ~2018
13402898454180417390724712 ~2019
13403497351126806994702312 ~2018
13404211535926808423071912 ~2018
13406556239926813112479912 ~2018
13409031107926818062215912 ~2018
1340959245313030...94400714 2024
13410076118326820152236712 ~2018
13410857293126821714586312 ~2018
1341102036591772...23719915 2024
13411126141126822252282312 ~2018
13411305551926822611103912 ~2018
13411705003126823410006312 ~2018
13412131585126824263170312 ~2018
13412496596326824993192712 ~2018
13413908857126827817714312 ~2018
13415097638326830195276712 ~2018
13416046698180496280188712 ~2019
13417380787780504284726312 ~2019
13417546524180505279144712 ~2019
13417920232180507521392712 ~2019
13418246692180509480152712 ~2019
13418359745926836719491912 ~2018
Home
4.828.532 digits
e-mail
25-06-01