Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6097544221112195088442312 ~2015
6097607845112195215690312 ~2015
6098593684136591562104712 ~2016
609860432413646...85811914 2023
6099205433912198410867912 ~2015
6099342371912198684743912 ~2015
6099404143112198808286312 ~2015
6099588593948796708751312 ~2017
6099812360312199624720712 ~2015
6099944300312199888600712 ~2015
6100037492312200074984712 ~2015
610043559671525...99175114 2024
6100655005112201310010312 ~2015
6100995911912201991823912 ~2015
6101076871112202153742312 ~2015
6101243653112202487306312 ~2015
6101262800312202525600712 ~2015
6101287019912202574039912 ~2015
6101612993912203225987912 ~2015
6102099554312204199108712 ~2015
6102606287912205212575912 ~2015
6102720385112205440770312 ~2015
6102804836312205609672712 ~2015
6103124816312206249632712 ~2015
6103176433112206352866312 ~2015
Exponent Prime Factor Dig. Year
6103264717112206529434312 ~2015
6104041681336624250087912 ~2016
6104190575912208381151912 ~2015
6104414659336626487955912 ~2016
6104745740312209491480712 ~2015
6104781649112209563298312 ~2015
6104977790312209955580712 ~2015
6105099023912210198047912 ~2015
6105317455112210634910312 ~2015
6105476825912210953651912 ~2015
6105631189112211262378312 ~2015
6106146557912212293115912 ~2015
6106402634312212805268712 ~2015
6106509127112213018254312 ~2015
6106901281748855210253712 ~2017
6107319751112214639502312 ~2015
6107504503736645027022312 ~2016
6107507155736645042934312 ~2016
6108370253912216740507912 ~2015
6108637996148869103968912 ~2017
6108921181112217842362312 ~2015
610896850091871...86757715 2023
6109779035912219558071912 ~2015
6110009165912220018331912 ~2015
6110063965112220127930312 ~2015
Exponent Prime Factor Dig. Year
6110375341112220750682312 ~2015
6110574155336663444931912 ~2016
6110920585112221841170312 ~2015
6111009150136666054900712 ~2016
6111050912312222101824712 ~2015
6111861259112223722518312 ~2015
6112253324948898026599312 ~2017
6112320398312224640796712 ~2015
6112478261912224956523912 ~2015
6112603820312225207640712 ~2015
6112651808312225303616712 ~2015
6114227528312228455056712 ~2015
611451206273632...65243914 2023
6114515351912229030703912 ~2015
6114725869112229451738312 ~2015
6114751927112229503854312 ~2015
6114842609912229685219912 ~2015
6114969553112229939106312 ~2015
6115221324761152213247112 ~2017
6115822411112231644822312 ~2015
6115921669112231843338312 ~2015
6116145965912232291931912 ~2015
6116156851112232313702312 ~2015
6116384786312232769572712 ~2015
6116435291912232870583912 ~2015
Exponent Prime Factor Dig. Year
6116544648761165446487112 ~2017
6117083089336702498535912 ~2016
6117634380761176343807112 ~2017
6117668048312235336096712 ~2015
6118034405912236068811912 ~2015
6118357729148946861832912 ~2017
6118425413912236850827912 ~2015
6118689350312237378700712 ~2015
611932215134246...73002314 2023
6119452622312238905244712 ~2015
6119754296312239508592712 ~2015
6119826697112239653394312 ~2015
6120720851912241441703912 ~2015
6120982729112241965458312 ~2015
6121643373736729860242312 ~2016
6121645789112243291578312 ~2015
6122095007912244190015912 ~2015
6122477747912244955495912 ~2015
6122951234312245902468712 ~2015
6123196661912246393323912 ~2015
6123437561948987500495312 ~2017
6123604781912247209563912 ~2015
6124131161912248262323912 ~2015
6124511717912249023435912 ~2015
6125198285336751189711912 ~2016
Home
4.933.056 digits
e-mail
25-07-20