Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
15904566602331809133204712 ~2018
15905484637131810969274312 ~2018
15907920119931815840239912 ~2018
15908547325131817094650312 ~2018
15909253733931818507467912 ~2018
15909482771931818965543912 ~2018
15912756590331825513180712 ~2018
15913348796331826697592712 ~2018
15913997371131827994742312 ~2018
15914327539131828655078312 ~2018
15914595499131829190998312 ~2018
15915057137931830114275912 ~2018
15918057685131836115370312 ~2018
15918363763131836727526312 ~2018
15920135597931840271195912 ~2018
15920549492331841098984712 ~2018
15922999111131845998222312 ~2018
15923098403931846196807912 ~2018
15924048311931848096623912 ~2018
15924737642331849475284712 ~2018
15927061895931854123791912 ~2019
15928240889931856481779912 ~2019
15928619651931857239303912 ~2019
15928768082331857536164712 ~2019
15930319574331860639148712 ~2019
Exponent Prime Factor Dig. Year
1593133019113823...45864114 2023
15931720153131863440306312 ~2019
15933490280331866980560712 ~2019
15935722352331871444704712 ~2019
15936601465131873202930312 ~2019
15937048541931874097083912 ~2019
1593907548475100...55104114 2023
15939371474331878742948712 ~2019
15940708052331881416104712 ~2019
15941675729931883351459912 ~2019
15942485813931884971627912 ~2019
15942555326331885110652712 ~2019
15944448542331888897084712 ~2019
15945720025131891440050312 ~2019
15947257501131894515002312 ~2019
15947262569931894525139912 ~2019
15948547087131897094174312 ~2019
1594945272111435...44899114 2024
15949936439931899872879912 ~2019
15950292415131900584830312 ~2019
15950929538331901859076712 ~2019
15952060765131904121530312 ~2019
1595338805771222...52198315 2023
15953481205131906962410312 ~2019
15954279541131908559082312 ~2019
Exponent Prime Factor Dig. Year
15955765352331911530704712 ~2019
15958358879931916717759912 ~2019
1595904097573415...68799914 2023
15959895755931919791511912 ~2019
15961314655131922629310312 ~2019
15962548327131925096654312 ~2019
15962662541931925325083912 ~2019
1596585330591660...43813714 2024
15966815605131933631210312 ~2019
15968361944331936723888712 ~2019
1596956566932564...64895915 2023
15970822307931941644615912 ~2019
15971561117931943122235912 ~2019
15971933185131943866370312 ~2019
15972104827131944209654312 ~2019
1597404163693025...60288715 2023
1597410384912683...46648914 2024
15975011537931950023075912 ~2019
15976597562331953195124712 ~2019
15976606328331953212656712 ~2019
15977680262331955360524712 ~2019
15977701579131955403158312 ~2019
15979409366331958818732712 ~2019
15979995389931959990779912 ~2019
15980459072331960918144712 ~2019
Exponent Prime Factor Dig. Year
15982337357931964674715912 ~2019
15982375955931964751911912 ~2019
15982712609931965425219912 ~2019
15983950400331967900800712 ~2019
1598477769171662...79936914 2024
15984914123931969828247912 ~2019
15985613407131971226814312 ~2019
15986032837131972065674312 ~2019
15986613632331973227264712 ~2019
15986668523931973337047912 ~2019
15988509476331977018952712 ~2019
15989228395131978456790312 ~2019
15990708926331981417852712 ~2019
15991723100331983446200712 ~2019
15992704460331985408920712 ~2019
15993214837131986429674312 ~2019
15993736118331987472236712 ~2019
15994635338331989270676712 ~2019
15996782851131993565702312 ~2019
15996881725131993763450312 ~2019
15996950378331993900756712 ~2019
15997873580331995747160712 ~2019
15998196031131996392062312 ~2019
15998524031931997048063912 ~2019
16000728272332001456544712 ~2019
Home
4.724.182 digits
e-mail
25-04-13