Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
15645859772331291719544712 ~2018
15645887225931291774451912 ~2018
15647052847131294105694312 ~2018
15647595703131295191406312 ~2018
15648808961931297617923912 ~2018
15652694401131305388802312 ~2018
15653139002331306278004712 ~2018
15654191069931308382139912 ~2018
15657140309931314280619912 ~2018
1565809654211503...68041714 2024
1566207054293132...08580114 2024
15663933613131327867226312 ~2018
15664105171131328210342312 ~2018
15666413089131332826178312 ~2018
15666882998331333765996712 ~2018
15668287406331336574812712 ~2018
15668334692331336669384712 ~2018
15669182828331338365656712 ~2018
15672169057131344338114312 ~2018
15673714661931347429323912 ~2018
15674304223131348608446312 ~2018
15680816737131361633474312 ~2018
15682233181131364466362312 ~2018
15685391180331370782360712 ~2018
15687343661931374687323912 ~2018
Exponent Prime Factor Dig. Year
15687836378331375672756712 ~2018
15687931111131375862222312 ~2018
15688654969131377309938312 ~2018
15690611285931381222571912 ~2018
15690725975931381451951912 ~2018
15690836540331381673080712 ~2018
15690898805931381797611912 ~2018
15691462610331382925220712 ~2018
15691488019131382976038312 ~2018
15692198504331384397008712 ~2018
15692293100331384586200712 ~2018
15693183863931386367727912 ~2018
1569394155193264...42795314 2024
15696198517131392397034312 ~2018
15697144199931394288399912 ~2018
15697799831931395599663912 ~2018
15699443641131398887282312 ~2018
15699753875931399507751912 ~2018
15700840945131401681890312 ~2018
15702345776331404691552712 ~2018
15703383863931406767727912 ~2018
15704265763131408531526312 ~2018
15705038357931410076715912 ~2018
15705496105131410992210312 ~2018
15705593651931411187303912 ~2018
Exponent Prime Factor Dig. Year
15707355668331414711336712 ~2018
15709035487131418070974312 ~2018
15710740145931421480291912 ~2018
15711069739131422139478312 ~2018
15712077320331424154640712 ~2018
15712783429131425566858312 ~2018
1571545965595688...95435914 2024
15715765238331431530476712 ~2018
15716061547131432123094312 ~2018
15716303507931432607015912 ~2018
1571673417978172...73444114 2023
15717002708331434005416712 ~2018
15718476797931436953595912 ~2018
15718929737931437859475912 ~2018
15720048265131440096530312 ~2018
15721201298331442402596712 ~2018
15722591453931445182907912 ~2018
15723205955931446411911912 ~2018
15723515423931447030847912 ~2018
15723670561131447341122312 ~2018
15724317866331448635732712 ~2018
15725036101131450072202312 ~2018
15725046968331450093936712 ~2018
15726526409931453052819912 ~2018
15726682783131453365566312 ~2018
Exponent Prime Factor Dig. Year
15727671065931455342131912 ~2018
1572780116235441...02155914 2024
15730128188331460256376712 ~2018
15730376861931460753723912 ~2018
15730577495931461154991912 ~2018
15731613398331463226796712 ~2018
15732499136331464998272712 ~2018
15734277527931468555055912 ~2018
15735025091931470050183912 ~2018
15735369191931470738383912 ~2018
15735879535131471759070312 ~2018
15736116380331472232760712 ~2018
15736733131131473466262312 ~2018
15737086094331474172188712 ~2018
15737364197931474728395912 ~2018
15741930584331483861168712 ~2018
15742524122331485048244712 ~2018
15743347643931486695287912 ~2018
15743722865931487445731912 ~2018
15745300418331490600836712 ~2018
15745465226331490930452712 ~2018
15747314209131494628418312 ~2018
1575186085811209...39020915 2025
15752900941131505801882312 ~2018
15753680285931507360571912 ~2018
Home
4.828.532 digits
e-mail
25-06-01