Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
15551021582331102043164712 ~2018
15552438565131104877130312 ~2018
15552686177931105372355912 ~2018
15553741819131107483638312 ~2018
15555083383131110166766312 ~2018
15558386101131116772202312 ~2018
15558393089931116786179912 ~2018
15562765133931125530267912 ~2018
15563068367931126136735912 ~2018
15563854547931127709095912 ~2018
15566691397131133382794312 ~2018
1556762391016563...04981715 2023
1557028335235085...28611915 2024
15570398941131140797882312 ~2018
15570882205131141764410312 ~2018
15572069972331144139944712 ~2018
15572647634331145295268712 ~2018
15575839867131151679734312 ~2018
15577957985931155915971912 ~2018
15578545837131157091674312 ~2018
1557973228978070...26064714 2025
15583219766331166439532712 ~2018
15586514924331173029848712 ~2018
15586597538331173195076712 ~2018
15587134543131174269086312 ~2018
Exponent Prime Factor Dig. Year
15587909407131175818814312 ~2018
15589020853131178041706312 ~2018
15589317233931178634467912 ~2018
15590522101131181044202312 ~2018
15591617335131183234670312 ~2018
15592497173931184994347912 ~2018
15593043404331186086808712 ~2018
15593735053131187470106312 ~2018
15594129601131188259202312 ~2018
15594503881131189007762312 ~2018
15594811436331189622872712 ~2018
15596175973131192351946312 ~2018
15597664682331195329364712 ~2018
15598878758331197757516712 ~2018
15598909943931197819887912 ~2018
15598995371931197990743912 ~2018
15600612761931201225523912 ~2018
15601444766331202889532712 ~2018
15601825118331203650236712 ~2018
15603731765931207463531912 ~2018
15603873776331207747552712 ~2018
15605233310331210466620712 ~2018
15606032189931212064379912 ~2018
15607584926331215169852712 ~2018
15608033984331216067968712 ~2018
Exponent Prime Factor Dig. Year
15608253589131216507178312 ~2018
15608256512331216513024712 ~2018
15608690411931217380823912 ~2018
15608911681131217823362312 ~2018
15610219967931220439935912 ~2018
15610600607931221201215912 ~2018
15611568485931223136971912 ~2018
15611629808331223259616712 ~2018
15612368323131224736646312 ~2018
15612903349131225806698312 ~2018
1561489384792111...82360915 2025
15614936527131229873054312 ~2018
15617207657931234415315912 ~2018
15617505371931235010743912 ~2018
15617519167131235038334312 ~2018
15617857877931235715755912 ~2018
15618001382331236002764712 ~2018
15618221312331236442624712 ~2018
15618374729931236749459912 ~2018
15618819055131237638110312 ~2018
1562128669935623...11748114 2024
15621652922331243305844712 ~2018
15623071757931246143515912 ~2018
15623107340331246214680712 ~2018
15623164091931246328183912 ~2018
Exponent Prime Factor Dig. Year
1562389541036030...28375914 2023
15624402557931248805115912 ~2018
15624416876331248833752712 ~2018
15624796517931249593035912 ~2018
1562899109294848...70175915 2023
15629013607131258027214312 ~2018
1562956734112216...89679915 2023
15630536486331261072972712 ~2018
15631035554331262071108712 ~2018
15632730401931265460803912 ~2018
15632912233131265824466312 ~2018
15635163041931270326083912 ~2018
15635643181131271286362312 ~2018
15637918328331275836656712 ~2018
15637926295131275852590312 ~2018
15638357393931276714787912 ~2018
1563973777914535...55939114 2023
15640227253131280454506312 ~2018
15640407920331280815840712 ~2018
15640515017931281030035912 ~2018
15642325663131284651326312 ~2018
15644123149131288246298312 ~2018
15644332943931288665887912 ~2018
15645196357131290392714312 ~2018
15645661513131291323026312 ~2018
Home
4.828.532 digits
e-mail
25-06-01