Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
17887282409935774564819912 ~2019
17887535261935775070523912 ~2019
17888089441135776178882312 ~2019
17889236438335778472876712 ~2019
17890305518335780611036712 ~2019
17890787909935781575819912 ~2019
1789134961916058...10272715 2023
17892288659935784577319912 ~2019
17894531323135789062646312 ~2019
17894773874335789547748712 ~2019
1789731532511364...69212716 2025
17898309877135796619754312 ~2019
17899586131135799172262312 ~2019
17902351274335804702548712 ~2019
17902886375935805772751912 ~2019
17903582699935807165399912 ~2019
17904350327935808700655912 ~2019
17906171743135812343486312 ~2019
17910110930335820221860712 ~2019
1791181247293439...94796914 2024
17912767237135825534474312 ~2019
17915574188335831148376712 ~2019
17915996791135831993582312 ~2019
17916018191935832036383912 ~2019
17918204804335836409608712 ~2019
Exponent Prime Factor Dig. Year
17919597535135839195070312 ~2019
17921855245135843710490312 ~2019
17922766298335845532596712 ~2019
17922941108335845882216712 ~2019
17923576825135847153650312 ~2019
17926323553135852647106312 ~2019
17927801359135855602718312 ~2019
17928729145135857458290312 ~2019
17931014395135862028790312 ~2019
17931690848335863381696712 ~2019
17932011308335864022616712 ~2019
17932523125135865046250312 ~2019
17935089913135870179826312 ~2019
17935367102335870734204712 ~2019
17935977395935871954791912 ~2019
17936374331935872748663912 ~2019
17938103507935876207015912 ~2019
17938349837935876699675912 ~2019
17938432273135876864546312 ~2019
1793874896571693...23620915 2024
17939192939935878385879912 ~2019
17941797791935883595583912 ~2019
17943423595135886847190312 ~2019
17943710581135887421162312 ~2019
17945255855935890511711912 ~2019
Exponent Prime Factor Dig. Year
17948542448335897084896712 ~2019
17950131305935900262611912 ~2019
17950535429935901070859912 ~2019
1795132396132405...10814314 2024
17954892893935909785787912 ~2019
17955334145935910668291912 ~2019
1795592187772025...78045715 2025
17957283473935914566947912 ~2019
17959612331935919224663912 ~2019
17960068904335920137808712 ~2019
17961225241135922450482312 ~2019
17963941045135927882090312 ~2019
17964549776335929099552712 ~2019
17971104755935942209511912 ~2019
17971442615935942885231912 ~2019
17973328880335946657760712 ~2019
17973520345135947040690312 ~2019
17974184425135948368850312 ~2019
17975361671935950723343912 ~2019
17976826298335953652596712 ~2019
17979781015135959562030312 ~2019
17979942950335959885900712 ~2019
1798003123312481...10167914 2024
17980917125935961834251912 ~2019
17980952429935961904859912 ~2019
Exponent Prime Factor Dig. Year
1798333641972445...53079314 2024
1798344551096294...28815114 2024
1798433738634783...44755914 2023
17984677685935969355371912 ~2019
17984875315135969750630312 ~2019
17985091921135970183842312 ~2019
17986369682335972739364712 ~2019
17986995164335973990328712 ~2019
17988112777135976225554312 ~2019
17990198407135980396814312 ~2019
17990317823935980635647912 ~2019
17990895005935981790011912 ~2019
17993775938335987551876712 ~2019
17995943539135991887078312 ~2019
17996347951135992695902312 ~2019
17996368856335992737712712 ~2019
17996378645935992757291912 ~2019
17998053908335996107816712 ~2019
17998206485935996412971912 ~2019
17998930529935997861059912 ~2019
18000725077136001450154312 ~2019
18000860615936001721231912 ~2019
18001190069936002380139912 ~2019
18002272382336004544764712 ~2019
18002557985936005115971912 ~2019
Home
4.813.619 digits
e-mail
25-05-25