Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10264833839920529667679912 ~2017
10264897601920529795203912 ~2017
10265310587361591863523912 ~2018
10265325413920530650827912 ~2017
10265639150320531278300712 ~2017
10265760731982126085855312 ~2018
10266175997920532351995912 ~2017
1026624810011962...67391315 2025
10266349361361598096167912 ~2018
10266446693920532893387912 ~2017
10267334105920534668211912 ~2017
10267547773120535095546312 ~2017
10267695104320535390208712 ~2017
10267750712320535501424712 ~2017
10268077978161608467868712 ~2018
10268081189920536162379912 ~2017
10268319943120536639886312 ~2017
10268369984320536739968712 ~2017
10268727224982149817799312 ~2018
10269129541120538259082312 ~2017
10269852188320539704376712 ~2017
10270678946320541357892712 ~2017
1027106049374354...49328914 2023
10271957359782175658877712 ~2018
10272174989920544349979912 ~2017
Exponent Prime Factor Dig. Year
10272252176320544504352712 ~2017
10272798767920545597535912 ~2017
10272864469182182915752912 ~2018
10272864781120545729562312 ~2017
10273450615120546901230312 ~2017
10273674865120547349730312 ~2017
10273682198982189457591312 ~2018
10274655310182197242480912 ~2018
10274718729761648312378312 ~2018
10274790575920549581151912 ~2017
10275577955920551155911912 ~2017
10276239530320552479060712 ~2017
10276659584320553319168712 ~2017
10277246484161663478904712 ~2018
10277370089920554740179912 ~2017
10277597637761665585826312 ~2018
10277770079920555540159912 ~2017
10279558421920559116843912 ~2017
10279631489920559262979912 ~2017
1027985994672467...87208114 2024
10280145908320560291816712 ~2017
10281317357920562634715912 ~2017
10281666967120563333934312 ~2017
10282098387761692590326312 ~2018
10282176115120564352230312 ~2017
Exponent Prime Factor Dig. Year
10283276767120566553534312 ~2017
10283341421920566682843912 ~2017
10283834633920567669267912 ~2017
1028408046532612...38186314 2024
10284937237120569874474312 ~2017
10285145074782281160597712 ~2019
10285767095920571534191912 ~2017
10287027488320574054976712 ~2017
10287237005361723422031912 ~2018
10287626231920575252463912 ~2017
10287692543920575385087912 ~2017
1028865724436440...34931914 2024
10288682129361732092775912 ~2018
10289193778782313550229712 ~2019
1028962427931866...42650315 2023
10289700473920579400947912 ~2017
10290032299120580064598312 ~2017
10290230882320580461764712 ~2017
10291661033920583322067912 ~2017
10291696280320583392560712 ~2017
10292079740320584159480712 ~2017
1029243919671502...22718314 2024
10292621095120585242190312 ~2017
10292755666161756533996712 ~2018
10292792489920585584979912 ~2017
Exponent Prime Factor Dig. Year
10293264000161759584000712 ~2018
10293550412982348403303312 ~2019
10293679747120587359494312 ~2017
10293901958320587803916712 ~2017
10294004759920588009519912 ~2017
10294055419120588110838312 ~2017
10294298299120588596598312 ~2017
10294979864982359838919312 ~2019
10294986569920589973139912 ~2017
10295130545361770783271912 ~2018
10295895802182367166416912 ~2019
10296380456320592760912712 ~2017
10297275233920594550467912 ~2017
10297464977920594929955912 ~2017
10297740767920595481535912 ~2017
10298068376320596136752712 ~2017
10298112032320596224064712 ~2017
10298550740320597101480712 ~2017
10298571257920597142515912 ~2017
10298823578320597647156712 ~2017
10298912637761793475826312 ~2018
10299311054320598622108712 ~2017
1029984848632410...45794314 2024
10299870992320599741984712 ~2017
10300448168320600896336712 ~2017
Home
4.933.056 digits
e-mail
25-07-20