Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11655863048323311726096712 ~2017
11656069496323312138992712 ~2017
11656248692323312497384712 ~2017
11656396609123312793218312 ~2017
11656706336323313412672712 ~2017
11657250731923314501463912 ~2017
1165898295131147...24079315 2024
11659140467923318280935912 ~2017
11659789598323319579196712 ~2017
11660895391123321790782312 ~2017
11661522601123323045202312 ~2017
11662756844323325513688712 ~2017
11664504851923329009703912 ~2017
11664863097769989178586312 ~2019
11665459478323330918956712 ~2017
11665746137923331492275912 ~2017
11666902381123333804762312 ~2017
11667896636323335793272712 ~2017
11667956280170007737680712 ~2019
11668282603123336565206312 ~2017
11668292732323336585464712 ~2017
11669340716323338681432712 ~2017
11669362423123338724846312 ~2017
11670527510323341055020712 ~2017
11671160641123342321282312 ~2017
Exponent Prime Factor Dig. Year
11671283258323342566516712 ~2017
1167161914431704...95067914 2024
11672399827123344799654312 ~2017
11673759073123347518146312 ~2017
11673759296323347518592712 ~2017
11673876854323347753708712 ~2017
11674447379923348894759912 ~2017
1167562265539153...61755314 2024
11676102305923352204611912 ~2017
11676908035770061448214312 ~2019
11679182537923358365075912 ~2017
11679283772323358567544712 ~2017
11679425733770076554402312 ~2019
11679601170170077607020712 ~2019
11680461515923360923031912 ~2017
11681069675923362139351912 ~2017
1168108522392803...53736114 2024
11681618405923363236811912 ~2017
11682607430323365214860712 ~2017
11683177073923366354147912 ~2017
11683321159123366642318312 ~2017
11683482945770100897674312 ~2019
11683507170170101043020712 ~2019
11683985839123367971678312 ~2017
11684283230323368566460712 ~2017
Exponent Prime Factor Dig. Year
11685671333923371342667912 ~2017
11686712413123373424826312 ~2017
11687002736323374005472712 ~2017
11689007813923378015627912 ~2017
11689251905923378503811912 ~2017
11691517033123383034066312 ~2017
11693371187923386742375912 ~2017
1169369041212221...78299114 2024
11693722061923387444123912 ~2017
11695037819923390075639912 ~2017
11695239341923390478683912 ~2017
1169608013036105...28016714 2024
11696499247123392998494312 ~2017
11697270851923394541703912 ~2017
11697398828323394797656712 ~2017
11697842419770187054518312 ~2019
11700953185123401906370312 ~2017
11701260436170207562616712 ~2019
11701976819923403953639912 ~2017
11702818177123405636354312 ~2017
11702911874323405823748712 ~2017
11703205739923406411479912 ~2017
11703815903923407631807912 ~2017
11704115970170224695820712 ~2019
11704501475923409002951912 ~2017
Exponent Prime Factor Dig. Year
11705429005123410858010312 ~2017
11706270572323412541144712 ~2017
11706590816323413181632712 ~2017
11707194317923414388635912 ~2017
11707832683123415665366312 ~2017
11708612378323417224756712 ~2017
11709020180323418040360712 ~2017
11709038117370254228703912 ~2019
11710879531123421759062312 ~2017
11711874223123423748446312 ~2017
11711909120323423818240712 ~2017
11711925389923423850779912 ~2017
11712285744170273714464712 ~2019
11713472222323426944444712 ~2017
11714149595923428299191912 ~2017
11717092796323434185592712 ~2017
11717299931923434599863912 ~2017
11717354021923434708043912 ~2017
11718569773123437139546312 ~2017
11719909849123439819698312 ~2017
11720625684170323754104712 ~2019
11721043465123442086930312 ~2017
11723013223123446026446312 ~2017
11723149429123446298858312 ~2017
11723493338323446986676712 ~2017
Home
4.828.532 digits
e-mail
25-06-01